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ABSTRACT

In the context of an equilibrium model with multiple risky assets, we map the characteris-

tics of the network structure under incomplete information to the cross-section of expected

returns. We show the existence of a link between the way firms are connected in a network

and both P/D ratios and expected returns. Firms that are more ‘central’ have lower P/D

ratios and higher expected returns. We take the model to the data and use information on

dividends to estimate the network structure. Then, we test two predictions of the structural

model. First, exogeneity is priced in the cross-section, even after controlling for the Fama

an French factors. Second, network structure helps to explain cross-sectional predictabil-

ity (industry momentum and reversal) as reported in the literature. The results support a

structural interpretation of these two empirical regularities.
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I Introduction

This paper studies the effects of the network structure implied by firms’ cash flows on the cross-

section of expected returns. An increasing literature in economics investigates the role of intercon-

nections between different firms and sectors, functioning as a potential propagation mechanism

of idiosyncratic shocks throughout the economy. Acemoglou et al. (2011) use network structure

to show the possibility that aggregate fluctuations may originate from microeconomic shocks to

firms. Such a possibility is discarded in standard macroeconomics models due to a “diversification

argument”. As argued by Lucas (1977), among others, such microeconomic shocks would average

out and thus, would only have negligible aggregate effects. Similarly, these shocks would have

little impact on asset prices. For instance an investor holding a diversified portfolio of firms in the

symmetric network of Figure 1 would not be exposed to each of these firm specific shocks as the

number of firms grows large.
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Figure 1a describes a disconnected orchard; Figure 1b describes a symmetrically connected network.

A different situation emerges in the network of Figure 2a. In this case firm 1 is central in

the network so that shocks to this firm propagate to the rest of the network. Even if an investor

were to hold a portfolio of n stocks (for n → ∞), she would still be exposed to shocks of firm 1.

Similarly, in the network of Figure 2b she would be exposed to shocks of the n central firms. This

becomes important in terms of the cross-sectional properties of expected returns. The centrality

of a firm makes observations of shocks to its dividend important for expected returns on other

stocks.
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Figure 2a describes a “Star” network with firm 1 being the central node. Figure 2b describes a clustered network

with n connected “Stars”.
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The idea of the existence of an asymmetric network structure has been at the heart of much of

policy decisions in the U.S. and Europe during the 2008 Credit Crisis, when several financial firms

have been rescued to avoid adverse effects to the rest of the economy. Substantial regulatory effort

is now been devoted to understand linkages across firms and sectors to limit excessive propagation

of shocks. Mervyn King, the governor of the Bank of England, called for banks that are “too

big to fail” to be cut down to size, as a solution to the problem of banks having taxpayer-funded

guarantees for their speculative investment banking activities. “If some banks are thought to be

too big to fail, then, in the words of a distinguished American economist, they are too big. It

is not sensible to allow large banks to combine high street retail banking with risky investment

banking or funding strategies, and then provide an implicit state guarantee against failure.” Alan

Greenspan echoed to these statement saying: “I don’t think merely raising the fees or capital on

large institutions or taxing them is enough ... they’ll absorb that, they’ll work with that, and it’s

totally inefficient and they’ll still be using the savings.”

In this paper, we study a Lucas economy with multiple trees producing a dividend that is

subject to both idiosyncratic shocks, which follow a tree-specific Markov chain, and a common

business cycle shock. We depart from the literature by allowing for the interaction of two channels:

(a) incomplete information with learning; and (b) an asymmetric cash-flow connectivity structure.

Agents do not observe whether the shocks are idiosyncratic or systematic as they only observe

firms’ dividend. From these observations they infer the state of the economy. This implies that

shocks to one firm affect expected returns on all other firms. Incomplete information and cross-

sectional learning becomes a source of comovement in asset prices in the network even if shocks

have hit a single firm only. The second channel introduces network connectivity by allowing each

firm to have heterogeneous and state-dependent intensity of distress (the parameters of the Markov

chain). This allows to have a network structure in which firms propagate and/or absorb shocks

differently. Once this is coupled with incomplete information and cross-sectional learning, the

model gives rise to interesting implications in terms of the link between firms’ connectivity and

the cross-section of expected returns. In our model, we show that the equilibrium risk premium

of a firm becomes positively related to the extent that shocks to its dividend affect the posterior

beliefs of other firms’ dividend (and to the extent that the opposite is not true). These securities

are actively connected to the rest of the network, in that they can transfer their own shocks while

being relatively insulated from other firms’ shocks. In equilibrium, the relative hedging demand

of actively and passively connected stocks is different, giving rise to a greater risk premium of

actively connected stocks (such as firm 1 in Figure 2a), with respect to passively connected stocks

(such as firm 2 in Figure 2a). We propose a reduced-form univariate measure of firm connectivity

that capture information that is relevant for expected returns, which we call “dynamic centrality”.

We show that the larger the dynamic centrality the larger the expected returns and the smaller

the P/D ratio, thus suggesting a structural link between network structure and the cross-section

of expected returns.
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We use data on dividends to estimate the characteristics of the network structure by maxi-

mum likelihood. Since dividends are distributed infrequently we aggregate firms in portfolios by

mimicking Fama and French (1992) methodology and find that that after controlling for market

beta, size and book-to-market, centrality has a positive and significant price of risk. An increase of

one standard deviation of the measure implies an approximate 0.18% decrease of the monthly risk

premium. A portfolio that is short stocks in the first quintile and long stocks in the last quintile

of the empirical distribution of centrality gains an average monthly return of 1.7%. A time series

regression shows that this return cannot be fully attributed to the Fama-French (1992) factors,

as a significant alpha of 1.26% emerges. At the same time, we find that centrality and network

connectivity helps to explain a significant part of the cross-section of the value premium: more

exogenous firms have larger book-to-market. This is very interesting since it offers a structural

explanation to a well known empirical regularity.

The second implication of the model is related to cross-sectional momentum. Menzly and Ozbas

(2011) find that returns of an industry are positively related to past returns of industries connected

by a supplier or customer relationship. They use data from input-output BEA tables and argue

that predictability emerges for these firms when analyst coverage is scarce and past connected

returns help resolve uncertainty. We use our model-implied notion of cash-flow connectivity to

distinguish between incoming connections and outgoing connections. We find that after controlling

for the strength of the incoming connectivity, i.e. to which extent the fundamentals of the firm are

caused by its most connected firms, a portfolio long (short) stocks whose connected performers did

best (worst) gains abnormal returns. Our network environment is consistent with cross-momentum

for the most exogenous stocks and cross-reversal for the least exogenous. This is interesting since

it suggests that network connectivity helps to explain an important well-known regularity in the

data.

Related Literature. This paper is related to three streams of the literature. A first stream

studies the implications of multiple trees (orchard) in asset prices. Cochrane, Longstaff, and

Santa-Clara (2008) show that even if dividends are lognormal i.i.d., simple market clearing can

give rise to complex asset price dynamics. Martin (2011) extend the results to a general set of

processes. Our model explores, instead, the implications of network connectivity. This is motivated

by the fact that some empirical properties in the data are difficult to be reconciled with traditional

models. Santos and Veronesi (2009), for instance, show that the SDF implied by nonlinear external

habit formation preferences counterfactually generates higher expected returns for stocks with

high price-dividend ratios – i.e. a ‘growth premium’ – if firms/trees are allowed to differ only in

terms of their expected dividend growth. They show that the ‘value premium’ can be obtained

as long as one introduces heterogeneity in the firms’ cash-flow risk, that is, in the covariance

between consumption growth and their dividend growth. A related result is obtained in Lettau

and Wachter (2007), who advocate the importance of weak or positive covariance between the

market price of risk and dividend shocks, in order to obtain a ‘value premium’. Our contribution
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is to show both theoreticaly and empirically a structural channel that is independent of preferences

that is consistent with some empirical regularities.

A second stream of the literature studies the role of sectorial shocks in macro fluctuations;

examples include Horvath (1998, 2000), Dupor (1999), Shea (2002), and Acemoglu, Carvalho,

Ozdaglar, and Tahbaz-Salehi (2011). This literature centers around whether sectorial shocks would

translate into aggregate fluctuations. While these studies present important empirical evidence on

the role of sectorial shocks, very little is known about their asset pricing implications in asymmetric

networks. In order to address this question, we introduce dynamics in a simple network by using

connected markov chains. If previous studies focus on shock propagation in static networks, to

study asset prices we also allow agents to have incomplete information on the sources of the

shocks (whether being idiosyncratic or systematic) and investigate the propagation of shocks in

the cross-section. The network connectivity that we study is related to the role played by firm

size distribution in Gabaix (2011) who shows that firm-level idiosyncratic shocks translate into

aggregate fluctuations when the largest firms contribute disproportionally to aggregate output.

While this could indeed be the case in our network structure, the specification of our model is in

terms of input-output linkages. We study the role of firm size in the empirical section.

A third stream of the finance literature studies the role of idiosyncratic risk in asset pricing and

cross-sectional momentum. The CAPM predicts that only systematic risk is priced and expected

excess stock returns satisfy a two fund separation property. While this is indeed the case in the

context of a symmetric network, as in Figure 1a and 1b, this is no longer true in a network in

which some firms have a central position, as in Figure 2. This feature is related to the findings in

Ang, Hodrick, Xing, and Zhang (2006) who find that volatility risk is priced in the cross-section of

expected stock returns, a regularity which is not subsumed by the standard size, book-to-market,

momentum effects, or liquidity effects. Moreover, Menzly and Ozbas (2011) find that returns of

an industry are positively related to past returns of industries connected by a supplier or customer

relationship. Our model produces implications that are consistent with their results.

The article is organized as follows. Section II describes the model and the agent’s learning

mechanism. Section III derives security prices and equity premia, relating their cross-sectional be-

havior to network connectivity and incomplete information. Section IV discusses the link between

network centrality and the fund-separation property of expected returns. Section V describes the

‘centrality’ measure in charge of testing empirically network connectivity. Sections VI and VII

contain the empirical analysis: the former is concerned with ‘centrality’ and the cross-section of

returns, the latter with cross-momentum. Section VIII concludes. Proofs and additional expres-

sions not reported in the text are in Appendix A. Appendix B reports details of the estimation

procedure of Sections VI and VII, and of a calibration discussed in Section V.
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II The Economy

In an infinite-horizon, pure exchange Lucas economy a representative agent maximizes Constant

Relative Risk Aversion utility of intertemporal consumption.

U0 = E

[∫ ∞

0

e−δs C1−γ
s

1 − γ
ds

]
. (1)

γ and δ are the relative risk aversion coefficient and the subjective discount rate, respectively.

The opportunity set of the investor consists of a locally risk-less security in zero net supply, with

rate of return rt (the interest rate), and n risky securities in positive net supply, each paying a

stochastic dividend stream Di
t, i = 1, . . . , N . Prices satisfy the market clearing condition that

aggregate consumption Ct is equal to the sum of the dividend processes Di
t plus an endowment

flow (labour income) Lt: Ct =
∑n

i=1
Di

t + Lt. We will treat the endoment flow as the n + 1−th

dividend process, although it is not the claim of a risky security. Single trees in this Lucas orchard

can be, e.g., sectors or individual firms in a domestic economy, or countries in an international

framework. Each endowment is composed of a smooth, lognormal dividend factor Y i
t and of jump

component xi
t, independent of Y i

t :

Di
t = Y i

t xi
t, i = 1, . . .N + 1, (2)

dY i
t

Y i
t

= µidt + σidZt,

While Y i
t is continuous, xi

t follows a simple jump process, where positive (recovery) jumps can

only follow negative (distress) ones, and they all have constant logarithmic size J i.1 Thus jump

events are actually transitions to and out of a persistent state of distress, captured by the binary

variable Hi
t , which takes value 1 if tree i is in distress state, and 0 if it is not. The persistence

of the state is governed by the distress (recovery) intensity λi
t (ηi

t), which is the instantaneous

probability of a negative (positive) jump, provided the tree is not (the tree is) in distress. The

long-run persistence of the states is important in our context, because we are interested in the

cross-sectional propagation and asset pricing implications of localized distress events in a connected

network. Expression (2) implies that dividends evolve in time as:

dDi

Di

= µidt + σidBi + (e−Ji − 1)(1 − Hi
t−)dHi

t − (eJi − 1)Hi
t−dHi

t (3)

An innovation dHi
t = 1 denotes a distress jump of tree i, while dHi

t = −1 denotes a recovery jump.

If Ht was independent across trees, the economy would be described by Figure 1 and the network

would be a traditional disconnected orchard.2

1This homogeneity assumption is not essential and it will be later generalized in the empirical section.
2Formally, the process xi

t, is given by xi
t = xi

0

∏nd(0,t−)
e−Ji ∏nr(0,t−)

eJi

, with nd(0, t−) and nr(0, t−) being
the number of past distress and recovery jumps, respectively.
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We now introduce connectivity in the network. We assume that the intensities depend on a

common latent business cycle factor S, and on the state of distress of the other trees: λi(S,H),

ηi(S,H).3 The trees are then part of a (production) network with two layers of connectivity: a)

a systematic connectivity, via the business cycle factor S, which bypasses individual connections

by exercising common influence on all dividend growths; b) a local connectivity, which allows

endowments to be positively or negatively affected by the state of distress of directly connected

trees. The latent factor S is a Markov chain with a recession (S = 1) and a boom state (S = 0),

and transition intensities kh and kl, respectively. When S is in a recession state, the distress events

of the trees are always more likely, and recoveries are less likely, so that λi(1,H) ≥ λi(0,H) and

ηi(1,H) ≤ ηi(0,H). We assume that S is unobservable by the agent, so that the agent is uncertain

about whether a shock to a tree is truly systematic and can generate contagion: a distress may

be indicative of a recession (S = 1), where all trees are more prone to distress and it is legitimate

to expect more, or it may have happened idiosyncratically during a boom (S = 0). The converse

would be true for a recovery event. Shocks to a tree are used by the agent to form posterior beliefs

about other trees’ fundamentals, because of the common influence of the business cycle factor.

The updating depends on the way trees are connected. Thus, isolated shocks to a single tree can

have immediate cross-sectional implications which depend on the network structure.

Examples. To provide a simple intuition of how the model specification can be used to

characterize different networks, in Figure 3 we display two examples. In the first, Sector 1 is

upstream in terms of cash-flow shocks, while Sector 3 is downstream. This could be used to

represent a vertically integrated value chain where shocks flow more quickly downstream (solid

rather than dashed arrows). In this case λ2(H1
t = 1) > λ1(H2

t = 1) and λ3(H2
t = 1) > λ2(H3

t = 1).

In the second network, on the right, we consider the case of a network in which Sector 1

transmits shocks to other sectors but not vice-versa. This is displayed by solid arrows that can be

formalized with large values of λj(H1
t = 1) for j 6= 1, and small λ1(Hj

t = 1).
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	 � 
 
 � �
� 
 � � � �
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� � � � � � �

� � � � � �
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Vertical Integration Sector 1 Dynamic Centrality

Figure 3. The panel on the left describes a vertically integrated network; the panel on the right describes a

network in which Sector 1 is exogenous.

3When no confusion can arise we adopt the notation Ht = (H1
t , . . . , Hn+1

t ).
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A Learning

Agents observe dividend jumps, hence realizations of Ht, but they do not know the state of the

business cycle variable S, thus they do not know the intensities λi and ηi. They estimate them

bayesianly from past jump events observing the whole network. Let ph
t = P (St = 0|Fx,Y

t ) be the

posterior belief that the economy is not in a bad systematic state. Fx,Y
t denotes agent’s available

information. It follows that the agent’s perceived intensities of distress and recovery jumps are,

respectively:

λ̂i(Ht) = E[λi(Ht)|Fx,Y
t ] = ph

t λ
i(0,Ht) + (1 − ph

t )λ
i(1,Ht) (4)

η̂i(Ht) = E[ηi(Ht)|Fx,Y
t ] = ph

t η
i(0,Ht) + (1 − ph

t )η
i(1,Ht) i = 1, . . . , n + 1 (5)

The filtered dynamics of the posterior probability ph
t for the latent factor are given in the next

lemma.

Lemma 1. Let ph
0 denote investor’s prior belief that S = 0. The posterior probability dynamics

of ph
t follows the stochastic differential equation:

dph
t =

[
kl − (kl + kh)p

h
t

]
dt + ph

t (1 − ph
t )

n+1∑

i=1

[
(λi(1,Ht−) − λi(0,Ht−))(1 − Hi

t−)dĤi
t+

(ηi(1,Ht−) − ηi(1,Ht−))Hi
t−dK̂i

t

]
(6)

where

dĤi
t :=

dHi
t − λ̂i

tdt

λ̂i
t

, dK̂i
t :=

−dHi
t − η̂i

tdt

η̂i
t

, (7)

is the process of distress and recovery innovations of tree i, i = 1, . . . , n + 1, such that

E[dĤi
t |Fx,Y

t ] = 0 and E[dK̂i
t |Fx,Y

t ] = 0.

Expression (6) is intuitive. The stochastic components dĤt and dK̂t, are the normalized unex-

pected innovations of distress and recovery realizations. If the distress intensities were independent

of the business cycle (i.e. λ(1,H) = λ(0,H)) , the events would be firm-specific and idiosyncratic:

signals would be uninformative and no cross-sectional learning would arise. When distress is more

likely in recession, however, the observation of such an event for a tree leads to a downward revi-

sion of the posterior probability ph
t over the cross-section. On the other hand, an upward revision

takes place in case of recovery event, if the latter is less likely in recession. Note that distress

and recovery signals are realized discretely over time. Therefore the posterior probability have

discontinuous trajectories. Between any two updates the process is dominated by the drift com-

ponent, which implies a reversion to the long-term mean p = kl/(kl + kh) at speed θ = kl + kh. p

is simply the fraction of time that the economy spends in a good state in the long run. The speed

of reversion to the mean is larger when transition probabilities are higher and boom-burst cycles
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shorter. This also implies that the impact of bad news in good times is larger than in bad times.

Since distress and recovery innovations enter equation (6) weighted by the difference of disaster

and recovery intensities in good and bad states, individual distress and recoveries have greater

weight in investors’ posterior distribution whenever the underlying individual intensity process is

more volatile across, hence correlated with, the business cycle factor. In addition, all signals have a

uniformly greater weight when overall Bayesian uncertainty is large, i.e., when the term ph
t (1−ph

t )

is large. This occurs for ph
t ≈ 0.5, when investors face the largest degree of subjective uncertainty

about the true common latent state of the economy. These features can generate interesting

effects of perceived distress contagion via agents’ optimal learning behavior: large revisions in

the posterior intensity of a tree i can arise because of the observation of a distress or recovery in

another tree j 6= i, even in absence of any cash flow innovations for tree i. An example in the next

subsection illustrates the point.

B Supply-Chain and Industry Networks

It is interesting to study the conditions in which ‘distress’ of a few trees can propagate through the

chain of technologically connected firms. If, for instance, some industrial sectors perform specific

functions, the quality and/or magnitudes of shock transmissions depend on the specific identity

of the sector which suffered the initial shock. Allowing jump intensities to be contingent on the

state of distress of other trees incorporates network structures in a simple form. As an illustration,

consider an economy with two sectors, Banking and Manufacturing. Suppose that Manufacturing

depends on Banking through the supply-side credit channel, so that distress of the latter exposes

to distress the former. The opposite is true to a lesser extent, but in recession the link becomes

closer in both directions, in accordance with the well documented fact that correlations increase

in periods of market downturns. Jump intensities in Panel 1 of Table VIII are consistent with this

simple network, depicted in Panel 2.

Insert Table VIII (8)

Panel 3 shows the evolution in time of the perceived probability that both sectors will be in distress

in 1 year.4 The solid line reports the disconnected case, where network structure is ignored, while

the dotted line is obtained taking dependencies into account. Intuitively, the direct propagation

of shocks through technological connections increases the probability of contagion and distress

clustering, relative to the disconnected case. Moreover, the informational contagion described in

the previous Section is much more evident. The posterior update at each endowment jump is

greater when sectors are believed to be more closely connected in a recession, because the same

bad news induces agents to take a more pessimist stance on the other Sectors.

4The expression of this probability is reported in Appendix A.
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III Model results

Cross-sectional learning and network structure give rise to interesting asset pricing implications

for both valuation ratios and risk premia. One of these implications is a form of cross-sectional

predictability that links the network connectivity of a firm to its expected excess returns. This

prediction is testable in the data.5

Although the network structure is rather general, it is possible to obtain closed-form solutions

for security prices. For simplicity, let us assume that all endowments Di
t share the same diffusive

component Yt in (2). In the empirical section we let Yt to be again stock-specific.

A Security prices

The equilibrium price-dividend (P/D) ratio of a security depends on two components: (a) the

vector H, capturing the global states of distress or non distress of all firms/trees in the network,

and (b) the posterior probability of being in a boom state, ph
t . Dividend jumps cause trees to enter a

persistent distress or normalcy state, changing the state vector Ht,
6 which in turn affects expected

future dividend growth. The next Proposition describes P/D-ratios in terms of the P/D-ratios

obtained in a complete information economy, in which the business cycle S is observable.

Proposition 1. Let P i(Ht) denote the price of the claim to the i−th endowment, Di
t. Let also

P i
0(Ht) and P i

1(Ht) denote the full-information prices conditional on a boom or a recession, re-

spectively. We have:
P i(Ht)

Di
t

= ph
t

P i
0(Ht)

Di
t

+ (1 − ph
t )

P i
1(Ht)

Di
t

, (9)

Full-information prices P i
u(Ht), u = 0, 1 are reported in (43) of Appendix A.

Intuitively, the agent estimates the P/D-ratios contingent on each business cycle state (i.e. for

St = 0 or 1). These depend on the global state of the whole network. The incomplete information

P/D ratio is a weighted average of the complete-information ratios, with weights given by the

conditional beliefs of being in the corresponding state. To analyze the marginal contribution of

the information channel and of the network structure, we remove both the characteristics and then

reintroduce them sequentially.

1) Suppose agents observe S and there is no connectivity, so that jump intensities do not depend

on H. Any distress event leads to an expected increase in dividend growth for the affected

asset, hence consumption growth in equilibrium, because a recovery is eventually foreseen.

In this case, low future state prices (marginal utility) imply a reduced desire to invest in

any risky assets in order to substitute consumption intertemporally, so that all P/D-ratios

5Additional implications can be derived for the behavior of aggregate consumption, interest rates and of the
market prices of risk. A separate Appendix illustrates these properties, which are not the focus of this paper.

6Ht takes 2N possible values, ranging from a combination where no tree/firm is in distress, Hi
t = 0, to one

where all are in distress, Hi
t = 1, i = 1, 2, . . . , n + 1.
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drop. The higher the distress intensity λ and dividend share of the distressed tree, the more

pronounced the negative spill-over effect, because the increment of expected consumption

growth is maximal.

2) Adding network structure back, the trees which are connected to the distressed one will

experience an increase of their distress jump intensity. Fears of distress contagion jeopardize

consumption recovery, hence the agent may want to invest in securities that can hedge the

lower perceived consumption growth. Procyclical assets are bad in this role, thus their

demand will drop. These are firms which are able to spread their own distress risk, but

relatively immune from distress contagion: the ‘exogenously connected’ firms. The intuition

is simple. An exogenous firm lays in distress when aggregate consumption is systematically

low, because of its ability to cause generalized distress. Its dividends are highly correlated

with aggregate consumption. The situation is different for firms that are more endogenous

to the shock and have modest or negative correlation with future aggregate consumption:

their demand will rise, or it will diminish less, and so their P/D-ratios.

3) With incomplete information, each distress induces agents to update to a higher value their

beliefs of a current recession. In recession all trees have higher distress risk and they are more

interconnected. While the network-related contagion acts through the chain of connections,

the perceived contagion acts systematically. The demand for securities flows towards less

procyclical assets, those whose jump intensities are relatively insensitive to the business

cycle: λ(1,H) ≈ λ(0,H).

It is intuitive that the degree of exogeneity (i.e. whether a firm is n = 1 or n = 4 in Figure

2a) of an asset determines its location in the cross-section of P/D ratios. One may think that

these characteristics are structural and related to either technological or contractual features that

regulate the input/output links of the firm to others in the network. At the same time, they

depend on the exposure of firms to a latent business cycle factor, that determines the extent

to which inferring business cycle conditions from the cross-section of fundamentals affects their

demand.

We will later suggest a global measure of dynamic centrality that accounts for these features.

B Risk premia

The equilibrium risk premium of the i−th security can be decomposed into a premium for diffusive

risk, a premium for distress risk (µi
λ) and a premium for recovery risk (µi

η). The latter two involve

a learning premium. These components are summarized in the following Proposition.
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Proposition 2. Let µi
t denote the equilibrium risk premium of the i−th security. We have:

µi
t = γσ2

Y + µi
λ + µi

η (10)

µi
λ =

n+1∑

j=1

(1 − Hj
t )
[
λ̂j(Ht) − R̂i(H−j

t )λ̂j
rn(Ht)

]
(11)

µi
η =

n+1∑

j=1

Hj
t

[
η̂j(Ht) − R̂i(H+j

t )η̂j
rn(Ht)

]
(12)

where H
−j
t (H+j

t ) coincides with Ht, except for firm j (not) in distress. The parameter λ̂j
rn (η̂j

rn)

is the risk-neutral intensity of distress (recovery) of firm j, reported in (47) of Appendix A.

R̂i(H−j
t ) =

P i(H−j
t )

P i(Ht)
, R̂i(H+j

t ) =
P i(H+j

t )

P i(Ht)
(13)

are the gross returns on security i when tree j has a distress or a recovery event, respectively. They

are reported in expression (53) of Appendix A.

The first term, γσ2
Y , is the usual compensation for the diffusive risk of the common dividend

component Y , independent of network connectivity.7 Assume there is no connectivity and no

incomplete information. The distress risk premium (10) becomes:

µi
λ =

n+1∑

j=1

(1 −Hj
t )
[
1 − θj

t R
i(S,H−j

t )
]
λj(S,Ht) S = 0, 1. (14)

The (full-information) risk-adjusted intensity of distress of firm j, λj
rn( · ) = θj

tλ
j( · ), is greater

than the objective intensity λj : the parameter θj
t > 1 can be interpreted as the risk adjustment

per unit of (instantaneous) probability that the agent requires as compensation for the risk that

the distress happens.8 If the event materializes, security i responds with a gross returns Ri.9 Thus

the distress risk premium (14) is a weighted average of the risk adjusted returns on security i that

would emerge had any tree a distress, with the likelihoods of distress as weights. As discussed in

Section III.B, with no connectivity and full-information the distress jump of any tree j gives rise

to lower P/D ratios for any security i, hence gross returns smaller than one. The equity premium

(14) is at its highest.

When we allow for network connectivity the expression is still (14), but post-distress returns

take into account the centrality of the asset in the network. In particular, if firm i1 is less sensitive

than firm i2 to external distress, and more able to transfer its own distress to other firms in the

network, then Ri1(S,H−j
t ) ≤ Ri2(S,H−j

t ), which implies that firm i1 has a higher risk premium.

7In the following discussion we consider distress risk. The intuition for recovery risk is similar.
8It is smaller than one in case of recovery event. See Appendix A for details.
9The full-information counterpart of (13) are fully described in Appendix A, see equations (53) and (54).
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Examples. Compare the disconnected network of Figure 1a to the ‘Star’ network of Figure

2a. To focus on network structure, assume that dividend payments are homogeneous across

firms. In Figure 1a, trees’ distress jumps are idiosyncratic, because their intensities are constant:

λj(u,Ht) = λj . In this framework the cross-section of equity premia is determined solely by

the relative magnitude of distress intensities. For finite n, the lower the distress probability,

the lower the risk premium. The reason is that in this case the firm pays dividends in low

aggregate consumption states. Moreover, this risk is diversifiable as the number of firms, n,

becomes arbitrarily large.

In a ‘Star’ network structure, as in Figure 2a, the situation changes. Firm 1 is central, because

its distress jump increases all other distress intensities, but the converse is not true. Moreover,

all other firms are disconnected among each other. Let us also assume that distress and recovery

intensities coincide across noncentral firms, so that absent connectivity there is no cross-sectional

variation of risk premia. In this context, firm 1 can be thought as a source of systemic risk in the

network: according to the next Proposition, it has the highest risk premium as n → ∞ and firms

are not in distress, hence risk premia are directly comparable.

Proposition 3. Consider a ‘Star’ network economy where a distress of Firm 1, the central firm,

increases the other distress intensities by a factor k. Assume that Assumption 1 and Assumption

2 in Appendix A are satisfied. There exists a k∗, dependent on firm characteristics, such that as

n gets arbitrarily large and k > k∗, Firm 1 has a higher risk premium than any noncentral Firm

N, conditional on any present state Ht where both firms 1 and N are not in distress.

The intuition is that Firm 1’s distress translates into a systematic risk factor, by increasing the

firms’ chances of distress, and leading the economy towards a low aggregate consumption state.

Since firms accrue to distress when Firm 1 lays in it, the latter displays highly cyclical pay-outs.

The only chance for the central firm of being less or equally exposed to the trough it creates, is

(a) to have superior recovery ability and pay-off normal dividends while most are still trapped

in distress and the discount factor (marginal utility) is large, or (b) to cause immediate distress

propagation, in which case all firms have the same loading on this factor. Concerning the last

observation, one of the key assumptions of Proposition 3 is:10

kλ (1 − nkλ∆ − nη∆) > (1 − nλ∆ − nη∆)λ (15)

for small ∆. The left-hand-side of (15) denotes the approximate probability of distress and per-

manence in this state over the next small time interval, for a noncentral firm, when Firm 1 is

in distress, and the economy size is large.11 This has to be larger than its counterpart when

Firm 1 is not in distress, for the latter to be riskier. Intuitively, an excessive strength of distress

propagation – i.e. a too large k – could not allow to distinguish significantly between central and

10See Assumption 2 in Appendix A. (15) reduces to expression (63).
11In which case the number of firms in distress or not is proportional to n.
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noncentral firms, with regard to the correlation between their distress state and economic fun-

damentals (aggregate consumption, in our model). Indeed, with immediate propagation (infinite

k) there cannot exist a state where the central firm is in distress and some other firm is not.

On the other hand, insufficient propagation – i.e. k < k∗ – could also imply, for the opposite

reason, economic fundamentals that are not significantly worse during Firm 1’s distress compared

to others’.

If we also restore incomplete information, we have to take into account how the assets dividend

growth and its network connectivity behave relative to the business cycle. As noted previously,

the less an asset is exposed – namely λ(1,H) ≈ λ(0,H) in all states of H – the more it is valuable

in a recession. With incomplete information its post-distress gross return – which amounts to the

expression in brackets in (10) – is larger, and its risk premium is smaller.

IV The Failure of the Two-Fund Separation Property

The cross-sectional heterogeneity in the connectivity of different trees has immediate implications

for the two-fund separation property of asset prices.

Proposition 4. Consider a sequence of economies indexed by the total number of firms, n, where

firms’ characteristics satisfy Assumption 1 and Assumption 4 in Appendix A.

If the network is symmetric, as in Figure 1, two fund-separation holds as n → ∞ : assets’

risk-premia have an exact one-factor representation. If the network is asymmetrically connected,

two fund separation does not hold. In the ‘Star’ form of Figure 2a, three fund-separation holds as

n → ∞: firms’ risk-premia are linear combinations of the central firm’s (firm 1) risk premium

and of an additional risk factor.

In a completely homogeneous economy, where also dividend jumps are the same across trees in

the limit of n → ∞, it is well known that expected returns are equal to the sum of two components:

(a) the risk free rate and (b) the marginal contribution of the asset to the variance of the market

portfolio. Idiosyncratic risk is not priced. The main reason is that for n → ∞ the market portfolio

can diversify away firm-specific shocks, so that these will not bear any risk premium. Indeed this

is the case for the disconnected network structure described in Figure 1a. In Figure 1b instead,

where network connections are identical, shocks are only systematic, in that they have perfect

correlation with shocks to the market portfolio when n grows arbitrarily large. While two-fund

separation holds in these cases, it does not hold for the ‘Star’ network in Figure 2a. The intuition

is simple: since firm 1 is dominant in the network, even for n → ∞ the market portfolio is not able

to diversify away its firm-specific risk. This result holds more generally: networks with a large

cross-sectional dispersion in centrality do not satisfy the two fund separation property and firm-

specific risk matters in equilibrium asset prices. Figure 2b reports a typical clustered economy.

There are n connected central firms, each with its own ‘Star’ subnetwork. Noncentral firms are
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disconnected among them, but they relate heterogeneously to their ‘Star’. The next Corollary

generalizes Proposition 4 to this situation.

Corollary 1. If the same assumptions of Proposition 4 hold, and the network is of the clustered

‘Star’ form of Figure 2b, with n ‘Star’ firms, 2n + 1−fund separation holds as the number of

noncentral firms in each subnetwork grows arbitrarily large and n remains finite.

This result states that every central firm is a source of priced risk both because of its own

idiosyncratic distress risk, and because of the idiosyncratic risk that is complementary to it. Non-

central firms are affected in distinct forms by their ‘Star’, even when ‘Stars’ are symmetrically

connected, which creates independent forms of complementarity. Indeed, with additional assump-

tions – such as (15) in the one-star case – we could conjecture that the firm with the tightest

links to its network – the most locally exogenous – has the larger expected return among the

central firms, thus of all the economy, in light of Proposition 3. The intuition is that this firm

suffers smaller consumption growth during its distress state, as the latter is more systematic for

the economy. Similarly, it is reasonable to expect that the firm most affected by its ‘Star’ has

larger risk premium among noncentral firms, as its non idiosyncratic (‘Star’-related) distress is

shared by more subnet peers on average, which makes it more correlated with consumption risk.

V An indicator of firm centrality

In network theory several parameters of connectivity have been proposed to describe the relation

of nodes in a graph. Examples include the “Bonacich centrality” vector and the “Influence”

vector. These parameters play an important role in static networks. In dynamic networks such as

ours, we introduce a dynamic concept of centrality that describe the cash flow features that have

direct asset pricing implications in our model. This measure is global in the sense that it uses

information on the connectivity in the whole network, not just on the firms which are directly

connected (neighboring firms). We define ‘dynamic centrality’ (or DCτ
ij) of asset i relative to j

over the horizon τ,the τ -deferred cross-correlation of distress of i and j:

DCτ
ij =

P [Hj
t+τ = 1, Hi

t = 1] − P [Hj
t+τ = 1]P [Hi

t = 1]√
P [Hj

t+τ = 1]P [Hi
t = 1](1 − P [Hj

t+τ = 1])(1 − P [Hi
t = 1]))

(16)

DCτ
ij is the unconditional correlation between the events that i is in distress at time t and that j

is in distress τ periods afterwards.12 The joint probability at the numerator can also be written

as

P [Hj
t+τ = 1, Hi

t = 1] = P [Hj
t+τ = 1|Hi

t = 1]P [Hi
t = 1] (17)

The above measure captures the distress causality between assets. In this sense, it is naturally

related to the statistical concept of exogeneity. In a two-firm economy, if firm i has low DCτ
ij but

12Expressions for the probabilities are in Appendix A.
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high DCτ
ji demands a lower expected return, because it is prone to be in distress when firm j has

been in distress, but not the opposite. Firm i is ‘actively’ connected to the rest of the economy,

and because of this property its distress status is strongly cyclical and influenced by the common

factor. It should be noticed that since shocks in our economy propagate dynamically, depending

on the extent of amplification or absorption due to the network structure, the previous measure

of centrality has a time dimension and it should be thought as a term structure characteristics.

The measure in (16) is obtained using the transition probability of the global vector H, to

exploit information about all possible contemporaneous states of distress (or recovery). Since this

is a multi-dimensional measure, one can obtain a synthetic metrics of centrality by calculating the

(fundamental) size-weighted average of DCτ
ij, ∀j 6= i. We define each asset’s ‘dynamic centrality’

as

DCτ

i =

n∑

j=1,j 6=i

(
DCτ

ij wij −DCτ
ji

1

wij

)
wij =

D
i
(exp(−J i) − 1)

D
j
(exp(−J j) − 1)

(18)

Outgoing connections are scaled by a weight wij , equal to the average dividend loss of asset i upon

distress as a fraction of the average dividend loss of asset j. Incoming connections are treated

symmetrically. If dividends are an equal fraction of the aggregate endowment, no heterogeneous

weighting is necessary. This measure of centrality implies that a high DCτ

i indicates a firm that

is central in the network: its shocks are mainly transfered to other firms but it is less exposed to

other firms’ shocks. It also implies a relatively large expected dividend loss upon distress relative

to the others. A low DCτ

i indicates the opposite case of a firm that is passively exposed to other

firms’ shocks. DCτ
is a global measure since it depends on the global characteristics of the vector

H and not just on the connectivity between firm i and its neighboring firms.

Examples. Consider Figure 1a and Figure 1b. In the first case, DCτ

i = 0 ∀i since firms are

disconnected. In the second case, the network is symmetric. If the symmetry is exact (i.e. firms

also have the same size, transition intensities and jump size J i), then also in this case DCτ

i = 0

for ∀i.

The case of Figure 2a is different. Firm 1 has the highest value of DCτ
; all other firms for

j = 2, ..N have a value of DCτ

j which depend on the extent to which a small shock to firm 1 implies

a large loss of firm j’s dividend.

A Implications of a Calibrated Economy

Based on previous intuition, the measure DCτ
i is positively related to expected returns. To help

organize our empirical tests on live data, we calibrate and simulate the model to investigate this

link.

We consider a network of n = 10 trees, aimed at capturing a set of stylized features of ten U.S.

Industrial sectors. The calibration procedure is detailed in Appendix B. Risky assets are considered

claims to sectors’ output. We use this fictitious economy to confirm the main implication of the

model, that we will later test in the empirical sections: larger dynamic centrality – DCτ
i , with τ = 1
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month – should be associated to larger expected returns on average. Using closed-form expressions

for security prices (9) and belief dynamics (6), we simulate 4500 years of monthly returns under the

information set of the agent. We then find the sectors’ dynamic centralities, DCτ
i , i = 1, . . . , 10.

Panel 1 of Table IX relates the dynamic centrality measures to the cross-section of unconditional

expected returns.

Insert Table IX

We find that a portfolio long the quartile of most exogenous assets, and short the least exogenous

gains an average annualized return of 8.6 %, with a t-statistics of 14. While the relation is not

linear, the results suggest that it is rational in a network to find a link between cash-flow connec-

tivity and expected returns. As reported in Panel 2, the cross-sectional ranking of expected excess

returns is increasing on average in the dynamic centrality measure. Indeed, the interpretation is

of a risk premium.

The next Sections are devoted to testing this and other predictions on the data.

VI Empirical Analysis

A Data and Portfolios Formation

To study the potential role of structural network connectivity on expected returns, we merge

two main datasets. The first updates the Fama-French (1992) sample of portfolio returns double

sorted according to usual characteristics up to December 2007. We use these portfolios to populate

the nodes in the network. The second dataset collects total cash-flow distribution for each node

(portfolio) in the network which we use to estimate firm connectivity. These two components are

jointly used to run extended Fama-MacBeth regressions controlling for dynamic centrality.

Portfolio Characteristics and Returns. We follow Fama and French (1992) and populate

a double sorted set of 10× 10 portfolios according to market beta and size (the “β-size” portfolios

thereafter). We update portfolios in June of each year, and for each we compute value-weighted

returns from July to June of next year. Our data consists of monthly stock returns on all firms listed

on NYSE, AMEX and NASDAQ, with accounting data reported in the COMPUSTAT database

from 1963 to 2007. Portfolios are formed in June of each year (year t). Betas of individual stocks

are computed from a time series regression of excess returns on the market excess return, for 24

to 60 of the months preceding June of year t (included). The market equity value of individual

stocks used in the size-sorting is recorded in June of year t. The monthly market returns and

risk-free rate are from K. French.13 Portfolios comprise a minimum of 333 and a maximum of

4659 firms. As in Fama and French (1992), we use the time series of returns of a given portfolio

type to compute its beta, as the sum of the slopes in a time-series regression of excess returns on

contemporaneous and 1-month lagged excess market returns. In the Fama-McBeth regressions to

13‘F-F Benchmark Factors Monthly’ of K. French’s website.
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follow, the portfolio beta is assigned to each individual stock belonging to the portfolio in a given

year, and each stock is assigned its book and market equity values available in December of year

t − 1. Thus portfolio construction and asset pricing tests are both designed to avoid any use of

contemporaneous or look-ahead bias.

Dividends and Cash-Flow Distribution. Once stocks are assigned to portfolios, we collect

quarterly data on their cash-flow distributions, namely total dividends (Compustat DVT), repur-

chases of common and preferred stock (Compustat PRSTKC) and the redemption value of the

preferred stock (Compustat PSTKRV), as well as the number of shares outstanding. As for beta,

size, and book-to-market, we avoid including forward looking information by using only previ-

ous fiscal year cash-flow distributions. We follow the procedure outlined in Menzly, Santos, and

Veronesi (2004), Hansen, Heaton, and Li (2002) and Bansal, Dittmar, and Lundblad (2002), to

build the assets cash-flow series that take into account shares repurchases and redemptions, and

that are consistent with value-weighted holdings of stocks in portfolios. Let j = 1, . . . , 100 denote

a given portfolio, Ωj
t the collection of stocks in that portfolio at month t, and V j

t its market value.

Let t coincide with a portfolio updating date (July of each year).

• At time t, for each stock i ∈ Ωj
t we find the number of shares θi

t that satisfies the value-

weighting condition.

• During the quarter running from t to t + 1, total cash-flows accruing to portfolio j are:

Dj
t,t+1 =

∑

i∈Ω
j
t

θi
t

DV T i
t+1 + PRSTKC i

t+1 − (PSTKRV i
t+1 − PSTKRV i

t )

N i
t

,

• If repurchases or redemptions occur for stock i during the quarter, the number of shares

held is updated in percentage of the total repurchase/redemption, excluding potential new

issues:

θi
t+1 = θi

t

N i
t − [PRSTKC i

t+1 − (PSTKRV i
t+1 − PSTKRV i

t )]/P i
t+1

N i
t

.

The numerator is the total number of shares outstanding at the beginning of next quarter

before new issues.

• At t+1, the ex-dividend market value of portfolio j is V j
t+1 =

∑
i∈Ω

j
t+1

θi
t+1P

i
t+1. The quarterly

total return on the portfolio is Rj
t+1 = (V j

t+1 +Dj
t,t+1 −V j

t )/V j
t . Ωj

t+1 coincides with Ωj
t , until

date t + 4, when the portfolio composition is updated and the procedure repeated.

• As in Menzly, Santos, and Veronesi (2004): we assume an initial investment in portfolio

j, V j
0 , corresponding to the market capitalization of the portfolio per US capita: V0 =

∑
i∈Ω

j
0

N i
0P

i
0/pop(0).

14 pop(0) is the US population at time 0, June 1953; we assume that

14Without loss of generality we have multiplied this figure by 100.
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the consumption flow Ct is the per-capita US total consumption expenditure of non-durables

plus services, as reported, already deflated and deseasoned, by National Income and Product

Accounts (NIPA).

We deseason cash-flow series using a four quarter trailing moving average. The model is

estimated on the cash-flows of 16 beta-size sorted portfolios.

The value weighted returns on the portfolios include cash-flow distributions in proportion the

holdings in each stock. Individual stocks returns also include cash-flow distributions.

B Model Estimation

We estimate the structural parameters of the model to test the role of the network structure

on asset prices. We relax two assumptions which were introduced for theoretical tractability.

First, we allow the diffusive dividend growth component Y to be stock specific, with drift and

diffusion coefficients µi and σi, i = 1, . . . , n + 1. Second, the jump component of logarithmic

dividend growth, J i can assume different values for distress and recovery jumps, with J i
1 and

J i
2 respectively. We calibrate the transition intensities of the common factor to the transition

characteristics of NBER recession cycles. Then, we use dividend data to estimate the parameters

of the dividend process and compute the structural measure of dynamic centrality proposed in

the tehoretical section that matches the connectivity found in the data. Each sorted portfolio is

assigned to a node in the network and provides an aggregation mechanism to reduce measurement

error and create the dispersion in expected excess returns that we want to study. Finally, we

conduct Fama-French (1992) style regressions and study the extent to which dynamic centrality

is a helpful characteristic to understand the cross-section of expected excess returns.

Step 1. (Transition Intensities). We set the transition intensities of the common factor S, kh and

kl to values consistent with the characteristics of NBER recession cycles. We use the following

system of exactly identified unconditional moment conditions:

π(S = 0) = 0.6893

π(S = 0)
1

k2
h

+ π(S = 1)
1

k2
l

=
56.1818

12

where π(S = 0) = kl/(kh + kl) is the stationary probability of a non recession and 0.6893 is the

fraction of time spent outside recession in the last 156 years. The left hand side of the second

expression is the average unconditional duration of a cycle, either recession or not. Notice that∫∞

0
exp(−kls)s ds = 1/k2

l is the expected duration of a non recession (simarly for a recession). We

obtain kl = 1.2616 and kh = 0.3911.

Step 2. (Dividend Process). To estimate the connectivity in the network and compute a measure

of dynamic centrality for each firm, we use firm-level dividend data aggregated at the portfolio

level. To address the dual goal of reducing estimation error and parameter propagation, we
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populate each node of the network with firms obtained from the double sorts on market beta and

size. We estimate the process on portfolio pairs, using a methodology similar to the Simulated

Maximum Likelihood method of Brandt and Santa-Clara (2002), as used also in David and Veronesi

(2012). Then, we aggregate to obtain the average level of dynamic centrality for each portfolio.

We estimate the dividend flow in the network based on observations of portfolio dividend pairs

{D̂i
t, D̂

j
t}, for all distinct portfolios i and j. The simulation step is needed because we don’t observe

either the distress and the events, or the posterior beliefs that determine their intensities in the

agent’s perception. We obtain parameters’ standard errors using the asymptotic distribution of

the estimates. Details of the procedure are in Appendix B.

Step 3. (Dynamic Centrality). Using statistically significant parameters, we compute the dynamic

centrality measure (18) for each portfolio. Table XI reports a graphical representation of the

network structure for the 4×4 beta-size sorted portfolios. The length of each circle is associated to

the magnitude of portfolio’s dynamic centrality, which aggregates the information about pairwise

network links: the deferred distress correlations in (16). Links departing from portfolio i are

the DC ijs, distress correlations obtained preconditioning on i’s past distress, where j is some

other portfolio. Links arriving to portfolio i are the DCjis, that precondition on j’s past distress.

Stronger causations correspond to solid lines.

Insert Table XI

C Empirical Results

C.1 Characteristics of Sorted Portfolios

We analyze the characteristics of the 100 market beta-size sorted portfolios, obtained with the

approach of Fama and French (1992). Panel 1 of Table I reports portfolio betas obtained from

time series regressions on the whole sample (the “post ranking betas”). Betas range from 0.63 to

2.03, hence display significant heterogeneity. The variation across the beta dimension shows that

ex-post portfolio betas are consistent with the ex-ante betas of the ranked stocks. Variation across

the size dimension confirms the well known fact that beta is inversely correlated with size. We have

also explored the book-to-market equity (BE/ME) dimension, by stratifying the same portfolios

into BE/ME deciles. According to Panel 2 of Table I, post ranking betas are less heterogeneous

across the BE/ME dimension, with both value and growth stocks characterized by higher betas.

The non-monotonicity of betas across BE/ME summarizes the well know inconsistency of the

CAPM with the value premium.

Insert Table I

Table II reports portfolios average monthly returns. Average returns display a strong decreasing

pattern along the size dimension, with figures decreasing monotonically from 3.3% to 0.1% per

month in Panel 1 as size increases from the first to the 10th decile. The pattern along the beta
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dimension is much weaker. Not only the range is smaller (0.9%-1.8%) but a consistently increasing

pattern of returns in betas is present only from the 5-th beta decile onwards. While book-to-market

sorting produces a weaker heterogeneity in average portfolio returns, it gives rise to an increasing

returns pattern in BE/ME, as expected (Panel 2).

Insert Table II

Table III reports in Panel 1 the conditional (DCτ

i , τ = 1m) dynamic centrality measure of the

portfolios. Dynamic centrality is roughly decreasing in size, although the correlation is not perfect,

as the pattern is not always monotonic even considering this relatively coarse stratification. No

clear pattern emerges with respect to market beta. Panel 2 reports the average value-weighted

returns of 5 dynamic centrality-sorted portfolios, corresponding to the quintiles of their distribution

with respect to the measure. Average returns of dynamic centrality sorted portfolios are increasing

in the dynamic centrality. We form a portfolio that is long the fifth dynamic centrality quintile

and short the first; then we regress its returns on the contemporaneous Fama-French factors:

market excess return, book-to-market (hml) and size (smb) factors. As shown in Panel 2b, the

positive return expected from buying centrality are not explained by the Fama-French factors:

for a portfolio average return equal to 1.7% monthly we obtain a statistically significant alpha of

1.26% monthly. This suggests that network structure is indeed relevant for asset prices.

Insert Table III

C.2 Fama-MacBeth Regression

We now turn to estimate the price of risk associated to the centrality factor. We follow closely

the Fama and French (1992) approach of using the whole cross section of individual stock returns

available at a given month. For monthly observations comprised between July of year t and June

of year t+1, we assign to a given stock its size (ME) and book-to-market as reported in December

of year t−1 and the post ranking beta of the portfolio to which it belongs. The centrality matching

procedure mimics the beta matching procedure, so that between July and June of a given year a

stock is assigned the centrality of its portfolio. At each month, we run a cross-sectional regression

of excess returns on beta, size, book-to-market and centrality. We report time-series averages of

coefficients and the corresponding t-statistics, computed using time-series standard deviations of

coefficients. Table IV reports results for various combinations of the explanatory factors.

Insert Table IV

The centrality price of risk is positive in all specifications, meaning that more exogenous stocks

gain higher expected returns. Dynamic centrality is significant at standard confidence levels,

although its negative correlation with book-to-market and positive correlation with size affect its
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t-statistics when we run a joint regression with all factors, leaving it still within the significance

level. Controlling for all factors, an increase of one standard deviation in the centrality of a stock

implies a 0.18% gain in monthly expected return.15

Centrality measures for beta-size sorted portfolios (Table III) imply centrality premium com-

ponents which range from 0 to approximately 0.7% monthly. Concerning beta, size and book-to-

market the findings on our sample broadly reproduce those of Fama-French (1992). The slopes

with respect to BE/ME and size are, respectively, positive and negative and both strongly signifi-

cant across all specifications. The evidence of a positive market beta disappears after one controls

for size.

C.3 EIV and Shanken’s Correction

Both the CAPM betas and the centrality measures employed in cross-sectional regressions are

estimates, rather than realizations of the true factors, hence prone to estimation error. As noted

in Shanken (1996a,b), while asymptotic consistency of the slope coefficients is guaranteed by

the consistency of the estimators, Fama-MacBeth standard errors underestimate the true slopes’

standard errors. This issue is partially addressed by assigning post-ranking portfolios betas and

centrality to individual stocks. Shanken (1996) proposes an asymptotic correction for the slopes’

t-statistics of CAPM betas to account for the errors-in-variables problem. Since this correction

is not readily adaptable to the centrality measures, we rely on Monte-Carlo simulations. Table

V reports summary statistics of simulated Fama-MacBeth slopes and t-statistics, obtained by

repeatedly sampling from the distribution of the measurement error and running the regressions

on each sample. Details of the procedure are in Appendix B.

The positive relation between expected returns and centrality is relatively robust to measure-

ment error. The median and mode slope coefficients are larger than the empirical value reported

in Table IV. The positive fifth percentile of the slope distribution shows that, after correcting for

errors in variables, a negative value is very unlikely. The Fama-MacBeth t-statistics has a median

across repetitions of 1.98, and a mode of 2.07.16 The positive beta-expected returns relation, on the

other hand, does not appear significant regardless of measurement error: the median t-statistics

is 1.24, the mode is 1.40, and its empirical probability of being smaller than 1.96 is 93%.

Insert Table V

D Network structure and cross-sectional momentum

The model can be used to help understanding a second important effect in asset pricing: cross-

sectional momentum. In the previous Sections we have tested whether an aggregate measure of

15The figure refers to the sample standard deviation of centrality across the beta-size sorted portfolios.
16Note that this experiment does not provide the small sample distribution of the slopes and t-statistics, since

we are only sampling parameters from the asymptotic distribution of first stage regressors, hence accounting only
for measurement error in these variables.
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stock ‘centrality’ is a priced factor in the cross section of expected returns. DCτ
i is an aggregate

indicator because it summarizes information on the distress connectivity of stock i with each

element of the cross-section. In doing so, it takes into account the strength of the connectivity, in

terms of average cash-flow distress of which i is responsible relative to the whole. In this Section

we dissect DCτ
i and exploit the information of the network structure at a more localized level.

Our empirical strategy is aimed at exploring whether our network structure can help explain the

results in Menzly and Ozbas (2011), who find that returns of an industry are positively related

to past returns of industries connected by a supplier or customer relationship. They use data

from input-output BEA tables and argue that predictability emerges for these firms when analyst

coverage is scarce and past connected returns help resolve uncertainty. We use our model-implied

notion of dynamic cash-flow centrality to distinguish the role played by different stocks. We use

the previously estimated network and, without changing any of its characteristics, we document

the extent to which it is consistent with their results.

D.1 Long-short portfolio procedure

Cross-sectional momentum cannot be generated simply by the existence of a network structure

linking different firms. Without informational frictions, any shock would have instantaneous im-

plications on the cross-section of expected returns. However, if there are informational frictions

(such as limited and segmented analyst coverage) then dividend shocks to a firm may be transfered

to prices of other connected firms with a lag, but in ways that is consistent with a network struc-

ture. This may generate a phenomenon that has been described in the literature as cross-sectional

momentum. In what follows, we will presume the existence of such informational frictions.

Consider a firm i with low centrality DC i. Dividend shocks to firm i will tend to lag those

of firms that are upstream to i. Unless agents have perfect information, it is possible that stock

i’s expected returns are correlated with past returns of upstream stocks. When we test for this

prediction we account for two features: i) past returns of a connected tree are relevant in proportion

to the ‘amount of shock’ that the tree transfers: how bad has the distress been or how good the

recovery. This channel affects discount factors through aggregate consumption, hence it affects

the expected returns of both trees involved. ii) Past returns of connected stocks may not matter if

the strength of even the closest connection is weak, that is, incoming correlation DC1m.
ji is small.17

We work with the network estimated on beta-size sorted portfolios, focusing on the set Ωi of the

four upstream portfolios that are most connected to portfolio i, namely the portfolios j with the

highest ‘transferring’ correlation DC1m
ji . The average ‘transferring’ correlation among these four

then measures how strongly i’s fundamentals are determined by its peers.18 We sort portfolios

into 4 bins of average ‘transferring’ correlation, to address point ii) above: once we condition on

similar strength of connectivity, we can disentangle the predicting effect of the type of shock being

propagated. Θj denotes the j−th connection strength bin, j = 1, . . . , 4. For each beta-size sorted

17DC1m.
ji is an incoming correlation from the point of view firm i.

18Formally, the highest average ‘transferring’ correlation for i is 1
4

∑
j∈Ωi

D1m.
ji
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portfolio i, we construct a signal, S i
t−1, which depends positively on the past performance of the

most connected stocks, and takes into account the relative amplitude of transfered shocks.19 After

assigning the signal S i
t−1 to each stock in portfolio i, we sort stocks in the same bin θj according

to their signal, and form a value-weighted portfolio long the last quintile and short the first of the

distribution.

Controlling for the strength of the connectivity, stocks whose mostly connected peers did worse

last month should gain lower present returns. Table VI reports summary statistics of the returns on

the long-short portfolios and results obtained when we regress them in time on contemporaneous

Fama-French factors.

Insert Table VI

Reading the Table row-wise we condition on connectivity strength. Average returns of long-short

portfolios are positive in all bins, strongly significant in the first and the last, and weakly in the

third and fourth. A positive and significant α emerges from the time-series regressions, meaning

that the portfolio performance cannot be fully attributed to exposition to Fama-French factors.

This test supports the presence of cross-sectional momentum originating from stocks that most

determine other stocks’ fundamentals in the network structure. Reading the table from the top

to the bottom, we compare portfolios in increasing order of connectivity strength. Past returns of

connected stocks should matter more at the bottom. The intuition is confirmed from the second

bin onwards, where average portfolio returns are increasing. The first bin is an exception, which

in our opinion is due to the substantial presence of stocks with small market capitalization: the

time-series regression confirms that this portfolio is highly exposed to size.

D.2 Fama-MacBeth Regression

To test for cross-momentum between connected stocks controlling for informational frictions, we

also apply the Fama-MacBeth procedure. We test whether the factor S i
t−1 in (19) is priced in the

cross-section of expected returns, and the sign of its price of risk. As highlighted earlier, Menzly

and Ozbas (2011) find evidence of cross-momentum among stocks with modest analyst coverage,

for which technological connections help resolve the uncertainty due to incomplete diffusion of

information. This is in principle consistent with our model, as we have seen in Section II that

the cross-sectional learning, induced by shocks to trees, has a wider impact in situations of high

19Formally, Si
t−1 is defined as:

Si
t−1 =

∑

u∈Ωi

ωu

(
∑

z∈u

ωu
z rz

t−1

)
ωu =

D
u
(exp(−Ju) − 1)

∑
v∈Ωi

D
v
(exp(−Jv) − 1)

(19)

Index z denotes the individual stocks in portfolio u, which is one of the four beta-size sorted portfolio most connected
to i. ωu

z is the value weight of stock z in portfolio u, and rz
t−1 its one-month past return. ωu is the average dividend

loss upon distress of portfolio u in percentage of the overall loss of portfolios most connected to i. While returns on
individual stocks are value-weighted inside their portfolio, returns of portfolios most connected to i are weighted
in proportion to the relative amplitude of the fundamental shock that the tree portfolio can transfer.
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uncertainty about the economic state (ph
t ≈ 0.5). Stocks that are highly actively connected

(exogenous) react with a shock of the same sign, while endogenous stocks under react or react

contrarily.

We work with the network estimated on beta-size sorted portfolios. We merge this sample

with the I/B/E/S dataset, from which we retrieve the number of monthly forecasts about stocks’

earnings-per-share, from June 1983 to July 2008. For each stock i we build the variable I i
t , which

takes value h if in month t− 1 the stock has 3 or more analyst covering the firm, and l otherwise.

We then interact the signal S i
t−1 with an analyst coverage dummy and with a size dummy, as

informational frictions likely depend on firm size. In other words, we construct the eight factors:

xi,cove,size
t = S i

t−11(I i
t = cove)1(si

t = size); cove = h, l size = s, m1, m2, b (20)

where 1(Xt = x) denotes a dummy variable which takes value 1 if Xt = x and 0 otherwise. si
t is

stock i’s quartile at time t within the market equity distribution. We then run the cross-sectional

regressions:

ri
t = at + γ′

tx
i,size,cove
t + β ′

tCt + εt. (21)

Ct are the traditional risk factors including beta, book-to-market; we also include short-term

reversal (REV) and medium term continuation (MTCONT), as constructed in Menzly and Ozbas

(2011). Table VII reports time series average and standard errors of regression coefficients for

various specifications.

Insert Table VII

Evidence of cross-momentum is confined to stocks in the first size-quartile with low analyst cover-

age, for which the price of risk is positive and statistically significant. This is consistent with an

information-based motivation of cross-sectional momentum. We also find some weaker evidence

of cross-sectional reversal among bigger firms with larger analyst coverage, which, contrarily to

cross-momentum’s, is not fully robust to the inclusion of control factors.

VII Conclusions

We study a dynamic economy where network links among firms’ cash-flows generate cross-sectional

predictability of returns. Our framework builds on two main features: (a) network connectivity,

which is introduced by making dividend jump intensities dependent on states of other trees and on

a latent common factor; (b) incomplete information about the systematic or idiosyncratic nature

of a shock. We explore the link between firms’ degree of centrality in the network and the cross-

sectional dispersion of expected returns. Highly ‘exogenous’ firms, which actively determine the

propagation of fundamental shocks in the economy, are pronouncedly procyclical and should gain

higher expected returns. We introduce an empirical measure of dynamic network centrality, and

we use data on dividend distributions at the portfolio level to test these predictions. Consistent
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with the prediction, we find evidence of a positive price of risk for the centrality factor. We also

employ the cash-flow connectivity structure to investigate cross-sectional momentum, that is, to

which extent past returns of connected firms can predict present returns. Consistent with the

model’s predictions, we find evidence of cross-momentum for firms with a small centrality and

narrow analyst coverage.
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Appendix A

Proof of Lemma 1. We use the notation Ft to denote the full information set, i.e. the filtration generated by

the Brownian motion Zt, the distress (or not) status vector Ht, and the business cycle state St. Fx,Y
t denotes

the restricted information set of the agent, or observation filtration, generated only by Ht and Zt. Informative

signals about St consists of negative (dH i
t = Hi

t− −Hi
t = 1) or positive (dH i

t = −1) dividend growth jumps of tree

i, i = 1, . . . , n + 1, because jump intensities depend on St. We have also referred to negative (positive) jumps as

transitions to (out of) distress. The continuous dividend component Yt conveys no information about the latent

business cycle. With respect to Ft, the intensity of the compound Poisson process Hi
t is

λHi

t = −Hi
tη

i(St, Ht) + (1 − Hi
t)λ

i(St, H
i
t) (22)

We need the following Lemma, whose proof is an adaptation of Theorem 19.1 in Lipster and Shyriaev (2001).

Lemma 2. Any Fx,Y
t − martingale Xt admits the representation:

Xt = X0 +

∫ t

0

n+1∑

i=1

fHi

s (dH i
s − λ̂Hi

s ds)

where adapted processes fHi

t satisfies the integrability conditions in Theorem 19.1 of Lipster and Shyriaev (2001).

It follows from Theorem 18.3 in Lipster and Shyriaev (2001) that, with respect to Fx,Y
t (incomplete informa-

tion), expression (22) becomes

λ̂Hi

t = −Hi
t [p

h
t ηi(0, Hi

t) + ηi(1, Hi
t)(1 − ph

t )] + (1 − Hi
t)[λ

i(0, Hi
t)p

h
t + λi(1, Hi

t)(1 − ph
t )] (23)

By Lemma 9.2 in Lipster and Shyriaev(2001) we have that, for j = 0, 1, the random process

yj
t = 1(λi(S, Ht) = λi(j, Ht)) − 1(λi(S, H0) = λi(j, H0)) −

∫ t

0

[−1(λi(S, Hs) = λi(j, Hs))kj+

1(λi(S, Hs) = λi(jc, Hs))kjc ]ds (24)

is an Ft−martingale, where jc denotes the complement of j. Taking conditional expectations with respect to Fx,Y
t

in the definition of yj
t , we obtain:

ph
t = ph

0 +

∫ t

0

[−ph
skj + ph

skjc ]ds + E[yj
t |Fx,Y

t ] (25)

We can now apply the martingale representation theorem in Lemma 2 above to the martingale E[yj
t |Fx,Y

t ] and

identify stochastic integrands as in Lipster and Shyriaev (2001), Theorem 19.5. We end up with the representation

given in the Lemma. This ends the proof.

Proof of Proposition 1. Given initial conditions H0 and xi
0, i = 1, . . . , n + 1, since the negative (positive) jump

intensity is zero if a tree is already in distress (in non distress), Hi
t = 1 (Hi

t = 0), we can think of the persistent

dividend component x in (2) as a two-state Markov chain, with states xi and xi, where xi > xi. This chain is in xi

if Hi
t = 0 and in xi otherwise. The relation between persistent dividend states and log dividend growth jump size

J i is:

J i = log
xi

xi
(26)
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In what follows we drop functional arguments for the intensities λ and η when no confusion may arise.

According to the optimality conditions for the representative agent, the equilibrium state price density, ξt, is:

ξt = e−δtY −γ
t

(
n+1∑

i=1

xi
t

)−γ

(27)

On the other hand, for any security price P i
t adapted to Fx,Y

t , including the risk-less bond, the discounted price

process (P i
t ξt +

∫ t

0
ξsD

i
sds) is a martingale. Ito’s lemma then implies that ξt must also obey:

ξt = exp

(
−
∫ t

0

(rs +
κ2

s

2
)ds−

∫ t

0

κsdZs +

∫ t

0

n+1∑

i=1

λ̂Hi

s (1 − θi
s)ds +

∫ t

0

n+1∑

i=1

− log(θi
s)sgn(Hi

t)dH i
s

)
(28)

where sgn(Hi
t) = −1 if Hi

t ≤ 0 and sgn(Hi
t) = 1 if Hi

t > 0. Furthermore, θi
t is the market price of event risk for

tree i - distress risk, if tree i is in not in distress, i.e. Hi
t = 0, recovery risk if tree i is in distress, i.e. Hi

t = 1 - κt is

the market price of diffusive risk, and

λ̂Hi

t = Hi
t η̂

i + (1 − Hi
t)λ̂

i
t.

By applying Ito’s lemma for jump-diffusion processes to (28), we obtain:

dξt = −ξtrtdt − ξtκdZt + ξt

[
n+1∑

i=1

(θi
s − 1)(−sgn(Hi

t)dH i
t − λ̂Hi

t )

]
(29)

By Ito’s lemma for jump-diffusion processes applied instead to (27), we obtain the alternative representation:

dξt = −δξt − γµξtdt +
1

2
γ(γ + 1)σ2ξtdt + ξt

n+1∑

i=1

[
(1 − Hi

t)

[
(xi +

∑
xt−)−γ − (xi +

∑
xt−)−γ

]

(xi +
∑

xt−)−γ
λ̂i

t

+Hi
t

[
(xi +

∑
xt−)−γ − (xi +

∑
xt−)−γ

]

(xi +
∑

xt−)−γ
η̂i

t

]
− γξtσdZt+

ξt

N∑

i=1

[
(1 − Ht)

[
(xi +

∑
xt−)−γ − (xi +

∑
xt−)−γ

]

(xi +
∑

xt−)−γ
(dH i

t − λ̂i
t) + Hi

t

[
(xi +

∑
xt−)−γ − (xi +

∑
xt−)−γ

]

(xi +
∑

xt−)−γ
(−dH i

t − η̂i
t)

]

(30)

∑
xt− denotes the sum of persistent dividend components across trees, excluding i, an instant before the jump of

i takes place. Matching the coefficients of expression to (30) to those of expression (29), we obtain the equilibrium

interest rate and market prices of risk:

rt = δ + γµY − 1

2
γ(γ + 1)σ2

Y +

N∑

i=1

{
Hi

t

[
1 −

(
xi +

∑
xt−

xi +
∑

xt−

)−γ
]

η̂i
t+ (31)

(1 − Hi
t)

[
1 −

(
xi +

∑
xt−

xi +
∑

xt−

)−γ
]

λ̂i
t

}
(32)

κt = γσY (33)

θi
t = Hi

t

(
xi +

∑
xt−

xi +
∑

xt−

)−γ

+ (1 − Hi
t)

(
xi +

∑
xt−

xi +
∑

xt−

)−γ

i = 1, 2, . . .n + 1 (34)

Let Ht denote the current vector of distress (or not) state for the trees, Yt the current continuous dividend
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component, and ph
t the current posterior probability of a boom. The price of the claim to the i−th endowment

processes, P i(Ht), is a function of these variables. We denote by P i
1(Ht) and P i

0(Ht) the full-information prices

conditional on a recession or a boom, respectively. Given the equilibrium state-price density ξt as in (27), the

absence of arbitrage opportunities implies that P i(Ht) reads:

P i(Ht) =
1

ξt

E

[∫ ∞

t

ξsYsx
i
sds

∣∣∣∣F
x,Y
t

]

=
Yt

(
∑n+1

i=1 xi
t)

−γ
E



E




∫ ∞

t

e−a(s−t)xi
s




n+1∑

j=1

xi
s




−γ

ds

∣∣∣∣∣∣
Ft





∣∣∣∣∣∣
Fx,Y

t



 (35)

=
Yt

(
∑n+1

i=1 xi
t)

−γ

[
ph

t V (0, Ht) + (1 − ph
t )V (1, Ht)

]
(36)

where

a = δ − µY (1 − γ) +
σ2

Y

2
(1 − γ)γ.

and

V i(u, Ht) = E




∫ ∞

t

e−a(s−t)xi
s




n+1∑

j=1

xi
s




−γ

ds

∣∣∣∣∣∣
Ft, St = u



 u = 0, 1. (37)

Equation (35) follows from the independence of Yt and xt and from the law of iterated expectations. We need to

compute V (u, Ht). The process

∫ t

0

e−asxi
s




N∑

j=1

xi
s




−γ

ds + e−atV i(u, Ht) (38)

is an Ft−martingale, therefore its ‘drift’ component must vanish. Remember that λHi

(u, Ht), u = 0, 1 denoted

the full-information intensity of the distress state for tree i: its intensity of recovery if the tree is in distress, its

intensity of distress otherwise:

λHi

(u, Ht) = (1 − Hi
t)λ

i(u, Ht) + Hi
tη

i(u, Ht) u = 0, 1

We assume that a > 0. to guarantee finite asset prices. Applying Ito’s lemma to (38), taking conditional expecta-

tions, and imposing the martingale property, we end up with the following system of equations:

[
0

0

]
=

([
−a −∑n+1

j=1 λHj

(0, Ht) 0

0 −a −∑n+1
j=1 λHj

(1, Ht)

]
+

[
−kh kh

kl −kl

])[
V i(0, Ht)

V i(1, Ht)

]
+

[∑n+1
j=1 λHj

(0, Ht)V
i(0, Ht ± j)∑n+1

j=1 λHj

(1, Ht)V
i(1, Ht ± j)

]
+



xi
t

(∑N
j=1 xj

t

)−γ

xi
t

(∑N

j=1 xj
t

)−γ



 (39)

The current distress (or not) vector state, Ht, moves to the combination Ht + j if tree j recovers from a distress, or

to Ht − j if it experiences a distress. V i(u, Ht ± j), u = 0, 1, denotes the function (37) conditional to one of these

two states. Since there are 2n+1 possible states for Ht,
20 and the function V i(u, Ht) must be solved jointly for all

states, it is clear that (39) is a system of 2 × 2n+1 linear equations. Eventually we can stack functions V i(u, H),

for all distress (or not) combinations H , into a 2 × 2n+1 vector Vi, where V i(0, H) and V i(1, H) are contiguous.

20Of course not all of them are mutually reachable, because at most one of the trees can fall in distress or recover
at some time instant.
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The vector Vi that solves the system (39) is

Vi = (a + AH)−1Ci (40)

where

a = diag2×2n+1(a) (41)

AH = diag2n+1

([∑n+1
j=1 λHj

(0, H) 0

0
∑n+1

j=1 λHj

(1, H)

]
+

[
−kh kh

kl −kl

])
− LH (42)

LH is a (2×2n+1)×2×2n+1 matrix whose entry (2h−1, 2u−1) is the intensity, in the boom state, of the tree that

needs to distress or recover to reach the u−th state of Ht from the h−th. The entry (2h, 2u) is the same intensity

contingent to the recession state. Therefore AH is the joint Markov transition matrix of the state variables (H, S).

Ci is the 2×2n+1 vector whose entry 2h−1 is xi
t

(∑N
j=1 xj

t

)−γ

in the h−th state of Ht: it is the persistent dividend

paid in that state, discounted by the marginal rate of intertemporal substitution. V i(0, Ht) and V i(1, Ht) are the

appropriate entries of Vi, corresponding to the current state Ht. Finally

P i
1(Ht) =

Yt

(
∑n+1

i=1 xi
t)

−γ
V i(1, Ht) (43)

P i
0(Ht) =

Yt

(
∑n+1

i=1 xi
t)

−γ
V i(0, Ht) (44)

Proof of Proposition 2. We report expressions for λi
rn(S, Ht), λ̂i

rn(Ht), ηi
rn(S, Ht) and η̂i

rn(Ht):

λi
rn(S, Ht) = λi(S, Ht)θ

i
t (45)

ηi
rn(S, Ht) = ηi(S, Ht)θ

i
t (46)

λ̂j
rn(Ht) = ph

t λi
rn(0, Ht) + (1 − ph

t )λi
rn(1, Ht) (47)

η̂j
rn(Ht) = ph

t ηi
rn(0, Ht) + (1 − ph

t )ηi
rn(1, Ht) (48)

θi
t = Hi

t

(
xi +

∑
xt−

xi +
∑

xt−

)−γ

+ (1 − Hi
t)

(
xi +

∑
xt−

xi +
∑

xt−

)−γ

i = 1, 2, . . .n + 1 (49)

Recall from (29) that θi
t−1 is the market price of tree i’s risk of dividend growth jumps, either distress or recoveries,

depending on i’s present state. λiθi
t and ηiθi

t are the risk-adjusted intensities of distress and recoveries. The agent

behaves risk-neutrally after this adjustment. λ̂j
rn(Ht) and η̂j

rn(Ht) are their partial information counterparts.

The risk premium of the security reads:

µi
t = E

[
dP i(Ht)

P i(Ht)

∣∣∣∣F
x,Y
t

]
+

Di
t

P i(Ht)
− rt (50)

In order to find its expression, we apply Ito’s lemma to the martingale M i
t = ξtP

i(Ht) +
∫ t

0
ξsD

i
sds, taking into

account expression (29) for the state-price density. We obtain

dM i
t = ξtD

i
tdt + ξtP

i(Ht)m
i
tdt − ξtP

i(Ht)rtdt − ξtP
i(Ht)κσY dt − ξtP

i(Ht)(κ − σY )dZt+

n+1∑

j=1

Hj
t

[
θj
t ξtP

i(H+j
t ) − ξtP

i(Ht)
]
(−dHj

t ) +

n+1∑

j=1

(1 − Hj
t )
[
θj
t ξtP

i(H−j
t ) − ξtP

i(Ht)
]
dHj

t (51)
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mi
t denotes security i’s instantaneous expected return E[dP i/P i|Fx,Y

t ]. H−j ( H+j) is the distress (or not) vector

to which the present state Ht jumps in case tree j had a distress (recovery). Dividing both sides by ξtP
i(Ht),

taking expectations and recalling that they vanish, we obtain:

µi
t = mi

t +
Di

t

P i(Ht)
− rt = κσY −

n+1∑

j=1

Hj
t

[
θj
t

P i(H+j
t )

P i(Ht)
− 1

]
η̂j

t −
n+1∑

j=1

(1 − Hj
t )

[
θj
t

P i(H−j
t )

P i(Ht)
− 1

]
λ̂j

t (52)

Since κ = γσY , the RHS of (52) coincides with the expression reported in the Proposition. Taking into account

expression (36) for security prices and the dynamics of the posterior belief in (6), the gross return on security i,

triggered by a distress or recovery of tree j, reads explicitly:

P i(H−j
t )

P i(Ht)
=

(
xj +

∑
xt−

xj +
∑

xt−

)γ




(
ph

t
λj(0,Ht)
bλj(Ht)

, (1− ph
t )λj(1,Ht)

bλj(Ht)

)
· (V i(0, Ht − j), V i(1, Ht − j))′

(ph
t , 1 − ph

t ) · (V i(0, Ht), V i(1, Ht))′



 (53)

P i(H+j
t )

P i(Ht)
=

(
xj +

∑
xt−

xj +
∑

xt−

)γ




(
ph

t
ηj(0,Ht)

bηj(Ht)
, (1 − ph

t )ηj(1,Ht)
bλj(Ht)

)
· (V i(0, Ht + j), V i(1, Ht + j))′

(ph
t , 1− ph

t ) · (V i(0, Ht), V i(1, Ht))′



 (54)

Functions V i are those of of expression (37). The full-information premium (14) follows after setting ph
t = 0

(conditional to a current recession) or ph
t = 1 (conditional to a current boom) in (52).

Expressions of probabilities in distress correlations (16). Unconditional marginal probabilities are obtained

from the steady-state distribution of the joint markov chain that governs (H, S). The transition matrix of this

process is the matrix AH in (41). Therefore the 2n+1 × 2 vector of steady state probabilities, for each possible

combination of H and state of the business cycle S, solves:

π′ = π′ exp
(
−AH

)
(55)

We obtain π numerically by iterating equation (55) until convergence is reached. To obtain P [Hj
t+τ = 1] (=

P [Hj
t = 1]) and P [Hi

t = 1] we sum the entries of π over all the states of H where j is in distress. The conditional

probability P [Hj
t+τ = 1|Hi

t = 0] is given by the standard solution of the Chapman-Kolmogorov equations for the

process (H, S):

P [Hj
t+τ = 1|Hi

t = 0] = I′i exp
(
−AHτ

)
Ij

Ij is a 2n+1 × 2 vector with ones for the combinations of H where tree j is in distress and zero otherwise. Ii is

similarly defined. When we work with transition matrices of pairs of trees, as in the empirical application, the

expressions are the same, after selecting the appropriate transition matrix AH.

Proof of Proposition 3. Let Ht denote a distress (or not) state where firms 1 and N re not in distress (H1
t =

HN
t = 0). Let ∆ be a small time interval. We denote by Pi

S(∆, Ht) the full-information price in state Ht of the

claim on dividends of firm i paid until time t + ∆, evaluated at time t: the dividend strip that expires in t + ∆.

With full-information, the price of the dividend strip can be found along the lines of the proof of Proposition

1. We have

Pi
S(∆, Ht)

Yt

=
1

(∑n+1
j=1 xj

t

)−γ E




∫ t+∆

t

e−a(s−t)xi
s




n+1∑

j=1

xi
s




−γ

ds

∣∣∣∣∣∣
Ft



 (56)

= 1
′
(Ht)

∫ t+∆

t

exp(−(a + AH)(s − t))dsCi (57)
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exp( · ) denotes the matrix exponential. 1(Ht) is 2n+1−dimensional column vector with 1 in the entry corresponding

to state Ht and zeros otherwise. Matrices a, AH , and vector Ci are reported in (41) and thereafter. Since ∆ is

small, we can also write:

Pi
S(∆, Ht)

Yt

≈ 1
′
(Ht) exp(−(a + AH)∆)Ci∆ (58)

≈ 1
′
(Ht)ACi∆

where A = [I − (a + AH)∆)]. We can think of the stock price (an infinite maturity dividend strip) as an infinite

sum of prices of forward-start dividend strips:

P i
S(Ht)

Yt

=
1

(∑n+1
u=1 xu

t

)−γ E




∞∑

j=0

e−a(tj−t)

(
n+1∑

u=1

xu
tj

)−γ

Pi
S(∆, Htj

)

Ytj

∣∣∣∣∣∣
Ft





=
1

(∑n+1
j=1 xj

t

)−γ




∞∑

j=0

1
′
(Ht) exp(−(a + AH)(tj − t))

∫ tj+∆

tj

exp(−(a + AH)(s − tj))dsCi





≈ 1
(∑n+1

j=1 xj
t

)−γ

[
1
′
(Ht)A

(
Ci + ACi + AACi + . . .

)
∆
]

where t0 = t and tj − tj−1 = ∆.

For simplicity we drop the explicit dependence on S from intensity parameters. We can think of S as an

additional argument of the aggregate state of distress (or not) H. We use the notation xi(Ht) to denote the

persistent dividend component paid by firm i in state Ht.

As we are going to consider limiting behaviors as the number of firms n grows unboundedly, we impose the

following assumptions.

Assumption 1. Dividends are homogeneous across assets, and they are deterministic functions of the economy

size n:

xi
t(H) =

{
f(n) if Hi

t = 0

f(n) if Hi
t = 1

i = 1, . . .n (59)

Moreover

lim
n→∞

( ∑n

j=1 xj
t(H)

∑n

j=1 xj
t(Ht)

)−γ

xi
t(H)

xi
t(Ht)

= c(H, Ht) (60)

with 0 < c(H, Ht) < ∞, for all possible states H.

We have emphasized the dependence of the limits on the particular state of aggregate distress for the economy. For

simplicity we drop the dependence on n from the xi
t( · ).

Assumption 2. Let H1 denote the collection of states where firm 1 is in distress, and H1 the states where it is

not. Then:

i) λj(H1) = kλ and λj(H1) = λ, j = 2, 3, . . . , n, with k > 1.

ii) ηj(H1) = ηj(H1) = η.

Intensity parameters depend on economy size n, in such a way that total distress and recovery risk are bounded as

n → ∞:
limn→∞ nλ = Kλ < ∞
limn→∞ nη = Kη < ∞ (61)
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which implies

lim
n→∞

λ = lim
n→∞

η = 0 (62)

The centrality parameter k satisfies the condition:

1 − Kλ(k + 1)∆ − Kη∆ > 0 (63)

for small ∆.

For simplicity we drop the dependence on n from λ and η.

Assumptions 1 simplifies the asymptotic behavior of dividend shares while insuring finite price-dividend ratios,

thus allowing us to focus on distress connectivity, where the network structure relies. Assumption 2 serves two

purposes: condition (61) guarantees finite asymptotic asset prices and risk premia, while condition (63) is a balance

condition which, as discussed in the text, guarantees that firm 1 is more exposed to its distress risk, by limiting

the extent of distress propagation. The dividend homogeneity assumption, which is formalized as

xj(H1) = x xj(H1) = x, j = 1, 2, 3, . . . , n, (64)

marginalizes the role of share size and let network connectivity drive the heterogeneity in risk premia.

The risk premium of the claim to the i−th firm is obtained from (14) of the text, after joining distress and

recovery risk in a single expression:

µi
t = γσ2 +

n∑

j=1

λ̃j
n(Ht)

(
1 − θj

n(Ht)
P i(H±j

t )

P i(Ht)

)
(65)

or

−



µi
t − γσ2 −

n∑

j=1

λ̃j



P i(Ht) =

n∑

j=1

λ̃j(Ht)θ
j(Ht)P

i(H±j
t ) (66)

where λ̃i = Hi
tη

i + (1 − Hi
t)λ

i. θ(Ht) − 1 is the market price for the distress or recovery risk of firm j reported

in (49). P i(H±j
t ) is the price to which security i jumps immediately after the distress or recovery of the j-th tree.

Using expression (59) to represent P i(H±j
t ), it is convenient to restate the RHS of (66) as:

Ri =
n∑

j=1

λ̃j(Ht)θ
j(Ht)

[
1
′
(H±j

t )
∞∑

u=0

exp(−(a + AH)(tu − t))ACi

]
(67)

Let Ai = ACi, with Ai(H) denoting the entries of Ai corresponding to state H . We also have

1
′
(H±j

t )
∞∑

u=0

exp(−(a + AH)(tu − t)) =
∞∑

u=0

e−a(tu−t)Prob
(
Htu

|H±j
t

)
(68)

where Prob ( · ) is the row vector of transition probabilities from time t to tu conditional on state H±j
t at time t.

We need the following two lemmas:

Lemma 3. For any state H where firms 1 and N are both in distress or they are both not in distress, AN (H) −
A1(H) = 0.
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Proof. When firms 1 and N are both in distress in state H we have:

AN(H) −A1(H) =
∑

j∈ND(H)

kλ∆
[
CN(H−j) − C1(H−j) −

(
CN(H) − C1(H)

)]

−
∑

j∈D(H)
j 6=1,N

η∆
[
CN(H) − C1(H) −

(
CN(H+j) − C1(H+j)

)]
+ (1 − a)(CN (H) − C1(H))

− η∆
[
CN(H) − C1(H) −

(
CN(H+1) − C1(H+1)

)]
︸ ︷︷ ︸

1

− η∆
[
CN(H) − C1(H) −

(
CN(H+N ) − C1(H+N )

)]
︸ ︷︷ ︸

2

(69)

We have used the notation Ci(H) to denote the entry of vector Ci that corresponds to state H . H+j (H−j) denotes

the state reached from H when firm j recovers (has a distress). D(H) (ND(H)) denotes the collection of firm

in (non) distress in state H1. Using the homogeneous dividends assumption iii), we have CN(H) − C1(H) = 0,

CN(H−j) − C1(H−j) = 0, CN (H+j) − C1(H+j) = 0, j 6= 1, N , while terms 1 and 2 in (69) are opposite, so that

AN (H) −A1(H) = 0.

When firms 1 and N are both not in distress H we have:

AN(H) −A1(H) =
∑

j∈ND(H)
j 6=1,N

λ∆
[
CN(H−j) − C1(H−j) −

(
CN(H) − C1(H)

)]

−
∑

j∈D(H)

η∆
[
CN(H) − C1(H) −

(
CN(H+j) − C1(H+j)

)]
+ (1 − a)(CN (H) − C1(H))

+ λ∆
[
CN(H−1) − C1(H−1) −

(
CN(H) − C1(H)

)]
︸ ︷︷ ︸

1

+λ∆
[
CN(H−N) − C1(H−N) −

(
CN(H) − C1(H)

)]
︸ ︷︷ ︸

2

(70)

Using the homogeneous dividends assumption iii), we have CN(H) − C1(H) = 0, CN(H−j) − C1(H−j) = 0,

CN(H+j) − C1(H+j) = 0, j 6= 1, N , while terms 1 and 2 in (70) are opposite, so that AN (H) −A1(H) = 0.�

Lemma 4. Consider two states, H1 ∈ H1 and H
1 ∈ H1, identical in all components except 1 and N : in H1 firm

N is not in distress, while in in H
1

firm N is in distress. If in the initial state Ht both firms are not in distress,

then:

lim
n→∞

[
kProb

(
Htu

= H1
∣∣Ht

)
− Prob

(
Htu

= H1
∣∣∣Ht

)]
λ∆ ≥ 0, (71)

and there exists a k∗(λ, η, kh, kl) such that, for k > k∗

lim
n→∞

[
Prob

(
Htu

= H1
∣∣Ht

)
− Prob

(
Htu

= H1
∣∣∣Ht

)]
λ∆ ≤ 0 (72)

for any H1, with tu ≥ t.

Furthermore:

Prob
(
Htu

= H1
∣∣Ht

) [
AN (H1) −A1(H1)

]
− Prob

(
Htu

= H
1
∣∣∣Ht

) [
A1(H

1
) −AN(H

1
)
]

=

[
kProb

(
Htu

= H1
∣∣Ht

)
− Prob

(
Htu

= H
1
∣∣∣Ht

)]
λ∆




∑

j∈ND(H1)
j 6=N

(
CN(H1−j) − C1(H1−j) −

(
CN(H1) − C1(H1)

))

(73)
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−
(
CN(H1) − C1(H1)

)]
+
[
Prob

(
Htu

= H1
∣∣Ht

)
− Prob

(
Htu

= H
1
∣∣∣Ht

)] [
(1 − a)(CN (H1) − C1(H1))+

∑

j∈D(H1)
j 6=1

η∆
((

CN(H1+j) − C1(H1+j)
)
−
(
CN(H1) − C1(H1)

))
− η∆

(
CN(H1) − C1(H1)

)



 (74)

Proof. For simplicity we adopt the following notation, limited to this proof: ptu

t (H) = Prob (Htu
= H |Ht).

Similarly to the proof of Lemma 3, H+j (H−j) denotes the state reached from state H when firm j recovers (has

a distress). In the same fashion, H+j1−j2+j3 , for instance, denotes the state reached from state H after a recovery

of firm j1, then a distress of firm j2, then a recovery of firm j3. We decompose the time interval tu − t into n∆

subintervals of arbitrarily small length ∆, with n∆ an arbitrarily large integer such that ∆n∆ = tu − t. We are

going to use repeatedly the following facts:

Properties:

1. For small ∆ and H ∈ H1:

Prob (Htu
= H |Htu−∆ = H) ≈ e−[num(D(H))η+num(ND(H))kλ]∆ (75)

Prob
(
Htu

= H−j
∣∣Htu−∆ = H

)
≈ 1 − e−kλ∆ (76)

Prob
(
Htu

= H+j
∣∣Htu−∆ = H

)
≈ 1 − e−η∆ (77)

(78)

for some firm j. num(D(H)) (num(ND(H))) is the number of firms that are (not) in distress in H . If

H ∈ H1 the expression kλ is replaced by λ.

2 For any state H and k > 1:

lim
n→∞

ke−[num(D(H))η+num(ND(H))kλ]∆ ≥ e−[num(D(H))η+num(ND(H))λ]∆ (79)

because

lim
n→∞

ke−[num(D(H))η+num(ND(H))kλ]∆ − e−[num(D(H))η+num(ND(H))λ]∆ ≈ lim
n→∞

k [1 − (num(D(H))η+

num(ND(H))kλ) ∆]− [1 − (num(D(H))η + num(ND(H))λ)∆] = lim
n→∞

(k − 1) − (k − 1)num(D(H))η∆

− (k2 − 1)num(ND(H))λ∆ ≥ (k − 1)
[
1 − Kη∆ − (k + 1)Kλ∆

]
> 0 (80)

for small ∆. The last equality in (80) follows from assumption (63).

3. num(ND(H1)) = num(ND(H
1
)),21 and similarly for the number of firms in distress, therefore we don’t

distinguish between these expressions.

4. Excluding firms 1 and N, the set of (non) distressed trees in H1 and H
1

coincide.

We apply the Chapman-Kolmogorov equations to express ptu

t (H1) and ptu

t (H1) in terms of one-step backward

transition probabilities ptu−∆
t ( · ). Identifying all states from which H1 and H1 can be reached, by the fact that in

small time ∆ at most one recovery or distress event can occur, we can write:

[
kptu

t (H1) − ptu

t (H1)
]
λ∆ =



ptu−∆
t (H1+1)k

(
1 − e−λ∆

)
− ptu−∆

t (H1+1)
(
1 − e−λ∆

)
︸ ︷︷ ︸

1

21Similarly for any state reached after a sequence of common events, such as H1+j1−j2+j3 and H
1+j1−j2+j3

,
j1, j2, j3 6= 1, N .
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+ ptu−∆
t (H1−N)k

(
1 − e−η∆

)
− ptu−∆

t (H1−N)
(
1 − e−η∆

)
︸ ︷︷ ︸

2

+ptu−∆
t (H1)ke−[num(D(H1))η+num(ND(H1))kλ]∆

−ptu−∆
t (H1)e−[num(D(H1))η+num(ND(H1))λ]∆

+
∑

v∈D(H1)
v 6=1

ptu−∆
t (H1+v)k

(
1 − e−kλ∆

)
−

∑

v∈D(H
1
)

v 6=N

ptu−∆
t (H

1+v
)
(
1 − e−λ∆

)

+
∑

v∈ND(H1)
v 6=N

ptu−∆
t (H1−v)k

(
1 − e−η∆

)
−

∑

v∈ND(H
1
)

v 6=1

ptu−∆
t (H

1−v
)
(
1 − e−η∆

)




λ∆ (81)

Since terms 1 and 2 in (81) are nonnegative because k > 1, we can write:

[
kptu

t (H1) − ptu

t (H1)
]
λ∆ =

[
ptu−∆

t (H1)ke−[num(D(H1))η+num(ND(H1))kλ]∆

−ptu−∆
t (H1)e−[num(D(H1))η+num(ND(H1))λ]∆+

∑

v∈D(H1)
v 6=1

ptu−∆
t (H1+v)k

(
1 − e−kλ∆

)
−

∑

v∈D(H
1
)

v 6=N

ptu−∆
t (H

1+v
)
(
1 − e−λ∆

)

+
∑

v∈ND(H1)
v 6=N

ptu−∆
t (H1−v)k

(
1 − e−η∆

)
−

∑

v∈ND(H
1
)

v 6=1

ptu−∆
t (H

1−v
)
(
1 − e−η∆

)




λ∆ (82)

= ptu−2∆
t (H1+1)

(
1 − e−λ∆

) [
ke−[num(D(H1))η+num(ND(H1))kλ]∆ − e−[num(D(H1))η+num(ND(H1))λ]∆

]
λ∆

︸ ︷︷ ︸
1

+ ptu−2∆
t (H1−N)

(
1 − e−η∆

) [
ke−[num(D(H1))η+num(ND(H1))kλ]∆ − e−[num(D(H1))η+num(ND(H1))λ]∆

]
λ∆

︸ ︷︷ ︸
2

+
∑

v∈D(H1)
v 6=1

ptu−2∆
t (H1+v+1)

(
1 − e−λ∆

) (
1 − e−kλ∆

)
kλ∆ −

∑

v∈D(H
1
)

v 6=N

ptu−2∆
t (H1+v+1)

(
1 − e−λ∆

) (
1 − e−λ∆

)
λ∆

︸ ︷︷ ︸
3

+
∑

v∈D(H1)
v 6=1

ptu−2∆
t (H1+v−N )

(
1 − e−η∆

) (
1 − e−kλ∆

)
kλ∆ −

∑

v∈D(H
1
)

v 6=N

ptu−2∆
t (H1+v−N )

(
1 − e−η∆

) (
1 − e−λ∆

)
λ∆

︸ ︷︷ ︸
4

+
∑

v∈ND(H1)
v 6=N

ptu−2∆
t (H1−v+1)

(
1 − e−λ∆

) (
1 − e−η∆

)
kλ∆ −

∑

v∈ND(H
1
)

v 6=1

ptu−2∆
t (H1−v+1)

(
1 − e−λ∆

) (
1 − e−η∆

)
λ∆

︸ ︷︷ ︸
5

+
∑

v∈ND(H1)
v 6=N

ptu−2∆
t (H1−v−N)

(
1 − e−η∆

) (
1 − e−η∆

)
kλ∆ −

∑

v∈ND(H
1
)

v 6=1

ptu−2∆
t (H1−v−N)

(
1 − e−η∆

) (
1 − e−η∆

)
λ∆

︸ ︷︷ ︸
6
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+ ptu−2∆
t (H1)ke−[2num(D(H1))η+2num(ND(H1))kλ]∆λ∆ − ptu−2∆

t (H
1
)e−[2num(D(H1))η+2num(ND(H1))λ]∆λ∆

+
∑

v∈D(H1)
v 6=1

ptu−2∆
t (H1+v)k

[
e−[num(D(H1))η+num(ND(H1))kλ]∆ + e−[num(D(H1+v)η+num(ND(H1+v ))kλ]∆

] (
1 − e−kλ∆

)
λ∆

−
∑

v∈D(H
1
)

v 6=N

ptu−2∆
t (H

1+v
)
[
e−[num(D(H1))η+num(ND(H1))λ]∆ + e−[num(D(H1+v )η+num(ND(H1+v))λ]∆

] (
1 − e−λ∆

)
λ∆

+
∑

v∈ND(H1)
v 6=N

ptu−2∆
t (H1−v)k

[
e−[num(D(H1))η+num(ND(H1))kλ]∆ + e−[num(D(H1−v)η+num(ND(H1−v ))kλ]∆

] (
1 − e−η∆

)
λ∆

−
∑

v∈ND(H
1
)

v 6=1

ptu−2∆
t (H

1−v
)
[
e−[num(D(H1))η+num(ND(H1))λ]∆ + e−[num(D(H1−v)η+num(ND(H1−v ))λ]∆

] (
1 − e−η∆

)
λ∆

+
∑

v∈D(H1)
v 6=1

∑

v2∈D(H1+v )
v2 6=1

ptu−2∆
t (H1+v+v2)k

(
1 − e−kλ∆

) (
1 − e−kλ∆

)
λ∆

−
∑

v∈D(H
1
)

v 6=N

∑

v2∈D(H
1+v

)
v2 6=N

ptu−2∆
t (H

1+v+v2
)
(
1 − e−λ∆

) (
1 − e−λ∆

)
λ∆ (83)

+
∑

v∈D(H1)
v 6=1

∑

v2∈ND(H1+v )
v2 6=N

ptu−2∆
t (H1+v−v2)k

(
1 − e−kλ∆

) (
1 − e−η∆

)
λ∆

−
∑

v∈D(H
1
)

v 6=N

∑

v2∈ND(H
1+v

)
v2 6=1

ptu−2∆
t (H

1+v−v2
)
(
1 − e−λ∆

) (
1 − e−η∆

)
λ∆

+
∑

v∈ND(H1)
v 6=N

∑

v2∈D(H1−v )
v2 6=1

ptu−2∆
t (H1−v+v2)k

(
1 − e−kλ∆

) (
1 − e−η∆

)
λ∆

−
∑

v∈ND(H
1
)

v 6=1

∑

v2∈D(H
1−v

)
v2 6=N

ptu−2∆
t (H

1−v+v2
)
(
1 − e−λ∆

) (
1 − e−η∆

)
λ∆

+
∑

v∈ND(H1)
v 6=N

∑

v2∈ND(H1−v)
v2 6=N

ptu−2∆
t (H1−v−v2)k

(
1 − e−η∆

) (
1 − e−η∆

)
λ∆

−
∑

v∈ND(H
1
)

v 6=1

∑

v2∈ND(H
1−v

)
v2 6=1

ptu−2∆
t (H

1−v−v2
)
(
1 − e−η∆

) (
1 − e−η∆

)
λ∆ (84)

The last equality in (84) follows by applying the Chapman-Kolmogorov equations to express ptu−∆
t ( · ) in terms of

one-step backward transition probabilities ptu−2∆
t ( · ), and identifying all states from which next-period states can

be reached, by the fact that in small time ∆ at most one recovery or distress event can occur. Terms 1 and 2 in

(84) are nonnegative because of Property 2. Terms 3, 4, 5, and 6 are nonnegative because k > 1. Therefore

[
kptu

t (H1) − ptu

t (H1)
]
λ∆ ≥ last RHS in (84) excluding terms 1-6. (85)

Note that terms 1-6 in (84) derive from the fact that coupled states H1 and H
1

– or the states reached after a

common sequence of distress and recoveries – have all elements in common except firm 1 and N, therefore in a

time interval ∆ can be reached from the same state, where either both 1 and N are in distress or both are not. By

Property 2, and the fact that k > 1, these terms are nonnegative. Applying the Chapman-Kolmogorov equations
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to the RHS of (85) to condition on states at time tu−3∆, the resulting expression is then greater or equal than the

same quantity that doesn’t involve these terms. Iterating the procedure of backward induction until time tu −m∆

and majorating the expression that neglects terms of the form 1-6 in (84), we can write:

[
kptu

t (H1) − ptu

t (H1)
]
λ∆ ≥

[
ptu−m∆

t (H1)kT 0(m, H1) − ptu−m∆
t (H

1
)T 0(m, H

1
)

+
∑

w1=+1,−1

∑

v1∈Sw1 (H1)
v1 6=l(w1)

ptu−m∆
t (H1+w1v1)kT 1

w1
(m, H1, v1) −

∑

w1=+1,−1

∑

v1∈Sw1 (H
1
)

v1 6=l(w1)

ptu−m∆
t (H

1+w1v1
)T 1

w1
(m, H

1
, v1)

+
∑

w1=+1,−1

∑

v1∈Sw1 (H1)
v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H1+w1v1)
v2 6=l(w2)

ptu−m∆
t (H1+w1v1+w2v2)kT 2

w1,w2
(m, H1, v1, v2)

−
∑

w1=+1,−1

∑

v1∈Sw1 (H
1
)

v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H
1+w1v1)

v2 6=l(w2)

ptu−m∆
t (H

1+w1v1+w2v2
)T 2

w1,w2
(m, H

1
, v1, v2)

+
∑

w1=+1,−1

∑

v1∈Sw1 (H1)
v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H1+w1v1 )
v2 6=l(w2)

∑

w3=+1,−1

∑

v3∈Sw3 (H1+w1v1+w2v2)
v3 6=l(w3)

ptu−m∆
t (H1+w1v1+w2v2+w3v3)k×

× T 3
w1,w2,w3

(m, H1, v1, v2, v3)

−
∑

w1=+1,−1

∑

v1∈Sw1 (H
1
)

v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H
1+w1v1 )

v2 6=l(w2)

∑

w3=+1,−1

∑

v3∈Sw3 (H
1+w1v1+w2v2)

v3 6=l(w3)

ptu−m∆
t (H

1+w1v1+w2v2+w3v3
)×

× T 3
w1,w2,w3

(m, H
1
, v1, v2, v3)

. . . . . .

. . . . . .

+
∑

w1=+1,−1

∑

v1∈Sw1 (H1)
v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H1+w1v1)
v2 6=l(w2)

· · ·
∑

wm=+1,−1

∑

vm∈Swm (H
1+

Pm−1
h=1

whvh )
vm 6=l(wm)

ptu−m∆
t (H1+

Pm
h=1 whvh)k×

× T m
w1,...,wm

(m, H1, v1, . . . , vm)

−
∑

w1=+1,−1

∑

v1∈Sw1 (H
1
)

v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H
1+w1v1)

v2 6=l(w2)

· · ·
∑

wm=+1,−1

∑

vm∈Swm (H
1+

Pm−1
h=1

whvh)

vm 6=l(wm)

ptu−m∆
t (H

1+
P

m
h=1 whvh

)×

×T m
w1,...,wm

(m, H
1
, v1, . . . , vm)

]
λ∆, (86)

where

T 0(m, H) =






1 if m = 0

T 0(m − 1, H)e−[num(D(H))η+num(ND(H))(kλ1(H≡H1)+λ1(H≡H
1
))λ]∆ otherwise

(87)

T 1
w1

(m, H, v1) =






0 if m = 0

T 0(m− 1, H)
(
1 − e−λ̃(w1,H)∆

)
+ T 1

w1
(m − 1, H, v1)×

×e−[num(D(H+w1v1))η+num(ND(H+w1v1))(kλ1(H≡H1)+λ1(H≡H
1
))]∆ otherwise

(88)
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T 2
w1,w2

(m, H, v1, v2) =






0 if m = 0

T 1
w1

(m − 1, H, v1)
(
1 − e−λ̃(w2,H)∆

)
+ T 2

w1,w2
(m − 1, H, v1, v2)×

×e−[num(D(H+w1v1+w2v2))η+num(ND(H+w1v1+w2v2))(kλ1(H≡H1)+λ1(H≡H
1
))]∆ otherwise

(89)

. . . (90)

T m
w1,...,wm

(m, H, v1, . . . , vm) =






0 if m = 0

T m−1
w1,...,wm−1

(m − 1, H, v1, . . . , vm−1)
(
1 − e−λ̃(wm,H)∆

)

+T m
w1,...,wm

(m − 1, H, v1, . . . , vm)e−num(D(H+
Pm

h=1 whvh))η∆×
×e−num(ND(H+

Pm
h=1

whvh ))(kλ1(H≡H1)+λ1(H≡H
1
))∆ otherwise

(91)

1( · ) denotes the indicator function of an event. Furthermore:

Sw(H) =

{
D(H) if w = +1

ND(H) if w = −1
(92)

l(w) =

{
1 if w = +1

N if w = −1
(93)

l(w) =

{
N if w = +1

1 if w = −1
(94)

λ̃(w, H) =

{
kλ1(H ≡ H1) + λ1(H ≡ H

1
) if w = +1

η if w = −1
(95)

For m = n∆, we have tu − m∆ = t, so that

ptu−n∆∆
t (H) =

{
1 if Ht ≡ H

0 otherwise
, ∀H (96)

By assumption, in the initial state Ht both firms 1 and N are not in distress, while firm 1 is in distress in any

state H1+
Ps

h=1 whvh , and firm N is in distress in any state H
1+

Ps
h=1 whvh

, s = 1, . . . , n∆. This implies that taking

m = n∆ in expression (86), its RHS vanishes, and claim (71) follows.

To see that claim (72) holds, notice that

lim
k→∞

ptu

t (H1) = 0, (97)

because, according to (75)-(76),

lim
k→∞

Prob
(
Htu

= H1
∣∣Htu−∆ = H1

)
= 0 (98)

lim
k→∞

Prob
(
Htu

= H1−j
∣∣Htu−∆ = H1

)
= 1 (99)

In other words, as the propagation of distress approaches immediacy, the probability of a future state where firm 1

is in distress and some other firm is not approaches 0. (97) does not hold instead for states of the form H1, so that

lim
k→∞

ptu

t (H1) − ptu

t (H1) < 0. (100)

Then there must exist a k∗(λ, η, kh, kl), hence also dependent on n, such that ptu

t (H1) < ptu

t (H1) for k >

k∗(λ, η, kh, kl). We haven’t been able to show that ptu

t (H1) − ptu

t (H1) is monotonically decreasing in k for k > 1.

We provide some supportive numerical evidence, on a finite economy with n = 10 firms. Table X reports the critical
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k∗(λ, η, kh, kl) for different values of λ and η, and the percentage of violations of the condition ptu

t (H1) − ptu

t (H1)

for k < k∗(λ, η, kh, kl), for all paired states (H1,H1), and initial states Ht. In all cases the percentages approach

zero monotonically as k → k∗(λ, η, kh, kl).

Insert Table X

To see that claim (74) holds, we write:

ptu

t (H1)
[
AN(H1) −A1(H1)

]
−ptu

t (H
1
)
[
A1(H

1
) −AN(H

1
)
]

= ptu

t (H1)




∑

j∈ND(H1)
j 6=N

kλ∆
[
CN(H1−j) − C1(H1−j)

−
(
CN(H1) − C1(H1)

)]
+

∑

j∈D(H1)
j 6=1

η∆
[(

CN(H1+j) − C1(H1+j)
)
−
(
CN(H1) − C1(H1)

)]

+(1 − a)(CN (H1) − C1(H1)) − kλ∆
(
CN(H1) − C1(H1)

)
− η∆

(
CN(H1) − C1(H1)

)]
(101)

− ptu

t (H
1
)




∑

j∈ND(H
1
)

j 6=N

λ∆
[
CN(H

1−j
) − C1(H

1−j
)

−
(
CN(H

1
) − C1(H

1
)
)]

+
∑

j∈D(H
1
)

j 6=1

η∆
[
CN(H

1+j
) − C1(H

1+j
) −

(
CN(H

1
) − C1(H

1
)
)]

+(1 − a)(CN(H
1
) − C1(H

1
)) − λ∆

(
CN(H

1
) − C1(H

1
)
)
− η∆

(
CN(H

1
) − C1(H

1
)
)]

(102)

Using the homogeneous dividends assumption iii), we have CN(H1)−C1(H1) = C1(H
1
)−CN(H

1
), CN(H1−j)−

C1(H1−j) = C1(H
1−j

) − CN(H
1−j

) if j 6= 1, N , CN(H1+j) − C1(H1+j) = C1(H
1+j

) − CN (H
1+j

), if j 6= 1, N .

Moreover ND(H1) excluding N coincides with ND(H
1
) excluding 1, and D(H1) excluding 1 coincides with D(H

1
)

excluding N. These facts allow to collect terms in (102) and obtain (74). �

Lemma 5. The condition k∗(λ, η, kh, kl) < k < k∗∗, where k∗∗ solves

1 − Kλ(k + 1)∆ − Kη∆ = 0 (103)

is sufficient for

lim
n→∞

RN −Ri ≥ 0 (104)

to hold.

By virtue of (67) and (68):

RN −R1 =

n∑

j=1

λ̃j(Ht)θ
j(Ht)

[
1
′
(H±j

t )

∞∑

u=0

exp(−(a + AH)(tu − t))
(
AN −A1

)
]

=
(
RN

ND −R1
ND

)
+ λ1(Ht)θ

1(Ht)

∞∑

u=0

e−a(tu−t)

[
∑

H1

Prob
(
Htu

= H1
∣∣H−1

t

) (
AN(H1) −A1(H1)

)

+
∑

H
1

Prob
(

Htu
= H

1
∣∣∣H−1

t

)(
AN (H

1
) −A1(H

1
)
)



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+λN(Ht)θ
N (Ht)

∞∑

u=0

e−a(tu−t)

[
∑

H1

Prob
(
Htu

= H1
∣∣H−N

t

) (
AN (H1) −A1(H1)

)

+
∑

H
1

Prob
(

Htu
= H

1
∣∣∣H−N

t

)(
AN (H

1
) −A1(H

1
)
)


 (105)

with

RN
ND −R1

ND =

n∑

j=1
j 6=1,N

λ̃j(Ht)θ
j (Ht)

∞∑

u=0

e−a(tu−t)

(
∑

H1

Prob
(

Htu
= H1

∣∣H±j
t

) (
AN (H1) −A1(H1)

)

+
∑

H
1

Prob
(

Htu
= H

1
∣∣∣H±j

t

)(
AN (H

1
) −A1(H

1
)
)


 (106)

We note that in the expression for RN
ND −R1

ND , in states H±j
t firms 1 and N are necessarily both not in distress,

because in the initial state Ht they are not by assumption. We also note that the only relevant states at time

tu in expression (105), are necessarily the paired states of the form H1 and H
1

of Lemma 4: any state of (non)

distress for the economy excluding firms 1 and N gives rise to four states; two of them are paired states H1 and

H
1
, and in the remaining two firm 1 and N are both in distress or both not in distress. In the latter case expression

AN (H) −A1(H) vanishes, according to Lemma 3. Using (74) of Lemma 4, expression (106) reads explicitly:

RN
ND −R1

ND =

n∑

j=1
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−a(tu−t)
∑

H1

U(H1, u)

U(H1, u) =
{[

kProb
(
Htu

= H1
∣∣Ht

)
− Prob

(
Htu

= H
1
∣∣∣Ht

)]
λ∆×




∑

v∈ND(H1)
v 6=N

(
CN(H1−v) − C1(H1−v) −

(
CN(H1) − C1(H1)

))
−
(
CN(H1) − C1(H1)

)





+
[
Prob

(
Htu

= H1
∣∣Ht

)
− Prob

(
Htu

= H
1
∣∣∣Ht

)] [
(1 − a)(CN(H1) − C1(H1))+

∑

v∈D(H1)
v 6=1

η∆
((

CN(H1+v) − C1(H1+v)
)
−
(
CN(H1) − C1(H1)

))
− η∆

(
CN(H1) − C1(H1)

)









(107)

Letting n → ∞, we distinguish three possible cases concerning a given state H1:

1. limn→∞ num
(
ND(H1)

)
= ∞, limn→∞ num

(
D(H1)

)
= K, for some finite integer K.

Setting:

K1
n =

∑

v∈ND(H1)
v 6=N

(
CN(H1−v) − C1(H1−v) −

(
CN(H1) − C1(H1)

))
, (108)

we have

∑

v∈ND(H1)
v 6=N

(
CN(H1−v) − C1(H1−v) −

(
CN(H1) − C1(H1)

))
−
(
CN(H1) − C1(H1)

)
= K1(n)+o(K1(n)) ≥ 0

(109)
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and

(1 − a)(CN(H1) − C1(H1)) +
∑

v∈D(H1)
v 6=1

((
CN(H1+v) − C1(H1+v)

)
−
(
CN(H1) − C1(H1)

))

−
(
CN (H1) − C1(H1)

)
= o(K1(n)) (110)

for n large. The sign of the RHSs in (109) derives from the fact that CN(H1−v) − C1(H1−v) ≥ CN (H1) −
C1(H1) for γ > 1. Due to (71) and (72) we can conclude that limn→∞ U(H1, u) ≥ 0.

2. limn→∞ num
(
D(H1)

)
= ∞, limn→∞ num

(
ND(H1)

)
= K, for some finite integer K.

Setting:

K2
n =

∑

v∈D(H1)
v 6=1

(
CN(H1) − C1(H1) −

(
CN(H1+v) − C1(H1+v)

))
, (111)

we have

(1 − a)(CN(H1) − C1(H1)) +
∑

v∈D(H1)
v 6=1

((
CN(H1+v) − C1(H1+v)

)
−
(
CN(H1) − C1(H1)

))

−
(
CN(H1) − C1(H1)

)
= −[K2(n) + o(K2(n))] ≤ 0 (112)

for n large, and

∑

v∈ND(H1)
v 6=N

(
CN(H1−v) − C1(H1−v) −

(
CN(H1) − C1(H1)

))
−
(
CN(H1) − C1(H1)

)
= o(K2(n)) (113)

The sign of the RHSs in (112) derives from the fact that CN(H1+v) − C1(H1+v) ≤ CN(H1) − C1(H1) for

γ > 1. Since K2(n) is bounded ∀n because of Assumption 1 and (62), claims (71) and (72) let us conclude

that limn→∞ U(H1, u) = 0.

3. limn→∞ num
(
D(H1)

)
= ∞, limn→∞ num

(
ND(H1)

)
= ∞. By the reasoning as above: limn→∞ U(H1, u) ≥

0.

We then have

lim
n→∞

RN
ND −R1

ND ≥ 0 (114)

It is clear from (105) and (114) that

lim
n→∞

RN −R1 = RN
ND −R1

ND + o(RN
ND −R1

ND), (115)

because, by the assumption that in the initial state Ht firm 1 and N are not in distress, there are only two states

H±j
t where firm 1 or firm N is in distress, regardless of n. �

Using (104) we obtain:

lim
n→∞



µN
t − γσ2 −

n∑

j=1

λ̃j



P N(Ht) = lim
n→∞

−RN ≤ lim
n→∞

−R1 = lim
n→∞



µ1
t − γσ2 −

n∑

j=1

λ̃j



P 1(Ht) (116)
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so that

lim
n→∞



µN
t − γσ2 −

n∑

j=1

λ̃j



 ≤



µ1
t − γσ2 −

n∑

j=1

λ̃j



 P 1(Ht)

P N(Ht)
≤ lim

n→∞



µ1
t − γσ2 −

n∑

j=1

λ̃j
n



 (117)

The last inequality follows from the fact that P N(Ht) > P 1(Ht) for large n, which is a consequence of the reasoning

above, once we notice that

P N(Ht) − P 1(Ht) = 1
′
(Ht)

∞∑

u=0

exp(−(a + AH)(tu − t))
(
AN −A1

)
, (118)

and that firms 1 and N are not in distress in Ht. We can conclude that µ1
t ≥ µN

t for n large.

�

Proof of Proposition 4. We use the same notation of the proof of Proposition 3. In order to focus on network

connectivity, we assume complete-information, so that the business cycle factor S is observable. For simplicity we

drop the explicit dependence on S from intensity parameters. We can think of it as an additional argument of the

aggregate state of distress (or not) H. H will denote a generic realization of H. Assumptions 1 and Assumption 2

of Proposition 3 are replaced by the following:

Assumption 3. Dividends are deterministic functions of the economy size n, and asymptotically homogeneous:

xi
t(H) =

{
f

i
(n) if Hi

t = 0

f i(n) if Hi
t = 1

i = 1, . . .n (119)

with limn→∞ xi
t(H) = limn→∞ xj

t(H), ∀i, j. Moreover

lim
n→∞

( ∑n
j=1 xj

t(H)
∑n

j=1 xj
t(Ht)

)−γ

xi
t(H)

xi
t(Ht)

= c(H, Ht) (120)

with 0 < ci(H, Ht) < ∞, for all possible states H.

Assumption 4. For a given economy size n, intensities λi(H) and ηj(H), j = 1, . . . , n are independent condi-

tionally on the state H, and they are realizations of common (across firms) distributions F λ(n, H) and F η(n, H).

These distributions are such that the following condition holds

limn→∞

∑n
v=1 λv(H) = Kλ(H) < ∞

limn→∞

∑n
v=1 ηv(H) = Kη(H) < ∞ (121)

which implies

lim
n→∞

λi(H) = lim
n→∞

ηi(H) = 0 ∀H, i = 1, . . . , n (122)

For simplicity we drop the dependence on n from the λi( · ), η( · ) and xi
t( · ).

Consider an initial state Ht and an economy size n. Following the lines of the proof of Proposition 3, we

redefine Ri as

Ri =

n∑

j=1

λ̃j(Ht)θ
j(Ht)

[
1
′
(H±j

t )

∞∑

u=0

exp(−(a + AH)(tu − t))Aci

]

= Ri
ND + λi(Ht)θ

i(Ht)
∞∑

u=0

e−a(tu−t)

[
∑

H

Prob
(
Htu

= H |H−i
t

)
Ai(H)

]
(123)
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The reason to partition Ri in (123) is to isolate the only term where firm j is in distress in H±j
t . We have set

Ri
ND =

n∑

j=1
j 6=i

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−a(tu−t)

(
∑

H

Prob
(

Htu
= H |H±j

t

)
Ai(H)

)
(124)

ci = Ci/xi
t(Ht) is the vector of dividends paid by firm i in each possible state H , discounted by the marginal rate

of intertemporal substitution, and scaled by the current dividend xi
t(Ht). We denote by ci(H) the entry of vector

ci corresponding to state H . We have also set Ai = Aci, with Ai(H) the entry of this vector corresponding to

state H . We use the familiar representation for the risk premium of the i−th equity security:22



µi
t − γσ2 −

n∑

j=1

λ̃j



 P i(Ht)

xi
t(Ht)

= −Ri (125)

In particular, we consider the limit limn→∞ Ri1 −Ri2 , for any pair of firms i1 and i2.

For convenience, the two symmetric networks of Figure 1, disconnected and fully connected, are considered

first and last respectively, while the ‘Star’ network of Figure 2 is considered in between.

‘Disconnected’ Network of Figure 1a.

If firms are not connected, the distribution of firms’ intensity parameters is independent of the state H , so that

λi(Ht) = λi and ηi(Ht) = ηi, i = 1, . . . , n, are independent and with identical distributions F λ(n) and F η(n),

respectively.

Lemma 3 holds in this context, therefore we need only consider paired states Hi1 and H
i1

, having all firms’

(distress or not) states in common, except for firms i1 and i2: the former is in distress in Hi1 but not in H
i1

. The

converse holds for i2.

As in (107) of Proposition 3, taking into account that k = 1 and the asymptotic homogeneity of dividends in

Assumption 4, we have, for n large:

Ri2
ND −Ri1

ND =

n∑

j=1
j 6=i1,i2

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−a(tu−t)
∑

Hi1

U(Hi1 , u)

U(Hi1 , u) =
[
Prob

(
Htu

= Hi1
∣∣H±j

t

)
− Prob

(
Htu

= H
i1
∣∣∣H±j

t

)]
B1(Hi1)

+
[
Prob

(
Htu

= Hi1
∣∣H±j

t

)
− Prob

(
Htu

= H
i1
∣∣∣H±j

t

)]
B2(Hi1) (126)

B1(Hi1) =





∑

v∈ND(Hi1)
v 6=i2

λv∆
(
ci2(Hi1−v) − ci1(Hi1−v) −

(
ci2(Hi1) − ci1(Hi1)

))

︸ ︷︷ ︸
1

−

(
λi2 − λi1

) (
ci2(Hi1) − ci1(Hi1)

)
∆

︸ ︷︷ ︸
2





22Remind that λ̃i = Hi
tη

i + (1 − Hi
t)λ

i
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B2(Hi1) = (1 − a)(ci2(Hi1) − ci1(Hi1)) − ∆
(
ηi1ci2(Hi1) − ηi2ci1(Hi1)

)
︸ ︷︷ ︸

3

+
∑

v∈D(Hi1 )
v 6=i1

ηv∆
[(

ci2(Hi1+v) − ci1(Hi1+v)
)
−
(
ci2(Hi1) − ci1(Hi1)

)]

︸ ︷︷ ︸
4

As n → ∞, given a generic Hi1 , we have either limn→∞ ND(Hi1) = K, for some integer K < ∞, or limn→∞ ND(Hi1) =

∞. In the former case, limn→∞ B1(Hi1) = 0 because of Assumption 1 and (122). In the latter, B1(Hi1) is an infinite

sum of independent random variables, because of Assumption 1. We assume that F λ and (f(n), f(n)) are such

that the Lindberg condition – see Durret (1995) – is satisfied, which is not restrictive in light of (122) and (60).

The Lindberg-Feller theorem then mandates that limn→∞ B1(Hi1) = ε1, where ε1 ∼ N(µ1, σ1).
23 Similarly, we

either have B2(Hi1) ≈ 0 or B2(Hi1) ≈ ε2 ∼ N(µ2, σ2) for n large. We now show that

lim
n→∞

Prob
(
Htu

= Hi1
∣∣H±j

t

)
− Prob

(
Htu

= H
i1
∣∣∣H±j

t

)
= 0 (127)

We refer to the proof of Lemma 4 above, where we set k = 1, because the network is disconnected, as assign its

own λj (ηj) to the distress (recovery) event of firm j, instead of having homogeneous parameters. Terms 1 and 2

in (81) become:

ptu−∆
t (Hi1+i1 )

(
1 − e−λi1∆

)
− ptu−∆

t (Hi1+i1)
(
1 − e−λi2∆

)

︸ ︷︷ ︸
1

(128)

ptu−∆
t (Hi1−i2)

(
1 − e−ηi2∆

)
− ptu−∆

t (Hi1−i2)
(
1 − e−ηi1∆

)

︸ ︷︷ ︸
2

For n large, (122) implies λi2 ≈ λi1 ≈ ηi2 ≈ ηi1 ≈ 0, so that term 1 ≈ term 2 ≈ 0. Terms 1 and 2 of (84) become

ptu−2∆
t (Hi1+i1)

[(
1 − e−λi1∆

)
e−[

P
v∈D(H1) ηv+

P
v∈ND(H1) λv]∆

︸ ︷︷ ︸
(129)

−
(
1 − e−λi2∆

)
e−[

P
v∈D(H1) ηv+

P
v∈ND(H1) λv]∆

]
λ∆

︸ ︷︷ ︸
1

(130)

+ ptu−2∆
t (Hi1−i2)

[(
1 − e−ηi2∆

)
e−[

P
v∈D(H1) ηv+

P
v∈ND(H1) λv]∆

︸ ︷︷ ︸
(131)

−
(
1 − e−ηi1∆

)
e−[

P
v∈D(H1) ηv+

P
v∈ND(H1) λv]∆

]
λ∆

︸ ︷︷ ︸
2

(132)

As n → ∞, the summations at the exponentials in square brackets converge to the same limit. Term 3 in (84)

becomes

lim
n→∞

[(
1 − e−λi1∆

)
−
(
1 − e−λi2∆

)] ∑

v∈D(Hi1)
v 6=1

ptu−2∆
t (Hi1+v+i1)

(
1 − e−λv∆

)
= 0, (133)

because λi1 ≈ λi2 and Assumption 4 guarantees that the summation converges to a bounded limit. The same

reasoning applies to terms 4-6 in expression (84), and to terms of this type that arise from further backward

substitutions (see the proof of Lemma 4). The rest of the proof is unchanged. Since pt
t(H) = 0 for any H of the

type Hi1 and H
i1

, by the assumption that i1 and i2 are not in distress in H±j
t , the limit (127) follows. In light of

23Mean and variance parameters do not play a specific role, hence we leave them unspecified.
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(126) we have

lim
n→∞

Ri2
ND −Ri1

ND = 0, (134)

so that

lim
n→∞

Ri2 −Ri1 =
∑

j=i1,i2

λjθj(Ht)

∞∑

u=0

e−a(tu−t)
∑

Hi1

{[
Prob

(
Htu

= Hi1
∣∣H−j

t

)
− Prob

(
Htu

= H
i1
∣∣∣H−j

t

)]
×

×B1(Hi1) +
[
Prob

(
Htu

= Hi1
∣∣H−j

t

)
− Prob

(
Htu

= H
i1
∣∣∣H−j

t

)]
B2(Hi1)

}
(135)

We now show that

lim
n→∞

Prob
(
Htu

= Hi1
∣∣H−i1

t

)
− Prob

(
Htu

= H
i1
∣∣∣H−i1

t

)

= − lim
n→∞

Prob
(
Htu

= Hi1
∣∣H−i2

t

)
− Prob

(
Htu

= H
i1
∣∣∣H−i2

t

)
(136)

We proceed as with the proof of (127), starting from (81) – after the proper modifications: k = 1 and firm specific

intensities – and cancelling terms 1 and 2, then cancelling terms 1-6 in (84), until we arrive at

ptu

t (Hi1) − ptu

t (Hi1) ≈ RHS of (86) (137)

for n large. H−i1
t is of the form Hi1 , while H−i2

t is of the form H
i1

, therefore letting m = n∆ on the RHS of (86)

it must be

(∗) Prob
(
Htu

= Hi1
∣∣H−i1

t

)
− Prob

(
Htu

= H
i1
∣∣∣H−i1

t

)
= T 0(m, Hi1)

(∗∗) Prob
(
Htu

= Hi1
∣∣H−i2

t

)
− Prob

(
Htu

= H
i1
∣∣∣H−i2

t

)
= −T 0(m, H

i1
)

or

(∗) =
∑

w1=+1,−1

∑

v1∈Sw1 (Hi1)
v1 6=l(w1)

T 1
w1

(m, Hi1 , v1)

(∗∗) = −
∑

w1=+1,−1

∑

v1∈Sw1 (H
i1)

v1 6=l(w1)

T 1
w1

(m, H
i1

, v1)

or

(∗) =
∑

w1=+1,−1

∑

v1∈Sw1 (Hi1 )
v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (Hi1+w1v1)
v2 6=l(w2)

T 2
w1,w2

(m, Hi1 , v1, v2)

(∗∗) = −
∑

w1=+1,−1

∑

v1∈Sw1 (H
i1 )

v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H
i1+w1v1)

v2 6=l(w2)

T 2
w1,w2

(m, H
i1

, v1, v2)

or

. . .

. . . (138)

Notice that any set of the form Sw1(Hi1), excluding l(w1), coincides with Sw1 (H
i1

) excluding l(w1). Notice also

that limn→∞ T 0(m, Hi1) = limn→∞ T 0(m, H
i1

), limn→∞ T 1
w1

(m, Hi1 , v1) = limn→∞ T 1
w1

(m, H
i1

, v1), and so on:

considering expressions (87)-(91), we notice that terms of the form (1− exp(−ωi∆)), ω = λ, η become independent
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of the specific firm i because of (122). We can conclude that (162) holds. Considering expression (135), it is clear

that (162) and the fact that λi1 ≈ λi2 for n large (because of (62)) imply that

lim
n→∞

Ri2 −Ri1 = 0. (139)

Thus

lim
n→∞



µi1
t − γσ2 −

n∑

j=1

λ̃j



 P i1(Ht)

xi1
t (Ht)

= lim
n→∞



µi2
t − γσ2 −

n∑

j=1

λ̃j



 P i2(Ht)

xi2
t (Ht)

(140)

Since any two individual assets risk premia (not currently in distress) can be expressed asymptotically as a linear

combination of each other, an exact one factor asymptotic structure holds for the expected returns of firms not

currently in distress.

‘Star’ Network of Figure 2.

Firms’ intensity parameters are independent only conditionally on a given state of aggregate (non) distress H . Thus

parameters on the same row of the transition matrix AH are mutually independent, but parameters on different

rows are correlated. To model the ‘star’ network of Figure 2, let H1 denote the states where firm 1 (the central

firm) is in distress, and H1 the states where it is not. Then:

λi(H1) = kλi, k > 1, i = 2, . . . , n (141)

λi(H1) = λi ∼ F λ(n), i = 1, . . . , n (142)

η(H1) = η(H1) = ηi ∼ F η(n), i = 1, . . . , n (143)

Let N denote a generic noncentral firm. Then, from the previous case:

lim
n→∞

RN
ND −R1

ND = lim
n→∞

n∑

j=1
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−a(tu−t)
∑

H1

U(H1, u)

U(H1, u) =
[
kProb

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)]
ε1(H1)

+
[
Prob

(
Htu

= Hi1
∣∣H±j

t

)
− Prob

(
Htu

= H
i1
∣∣∣H±j

t

)]
ε2(H1)

ε1(H1) =

{
0 if limn→∞ND(H1) = K < ∞

ε1 ∼ N(µ1, σ1) if limn→∞ ND(H1) = ∞

ε2(H1) =

{
0 if limn→∞D(H1) = K < ∞

ε2 ∼ N(µ2, σ2) if limn→∞ D(H1) = ∞ (144)

Because of Assumption 4, Lemma 4 of Proposition 3 holds in the present context. Let

ε1D = λN (Ht)θ
N (Ht)

∞∑

u=0

e−a(tu−t)

[
∑

H

Prob
(
Htu

= H |H−N
t

)
AN (H)

]

− lim
n→∞

λ1(Ht)θ
1(Ht)

∞∑

u=0

e−a(tu−t)

[
∑

H

Prob
(
Htu

= H |H−1
t

)
A1(H)

]
(145)

Since N was an arbitrary noncentral firm, and all noncentral firms are identical, the random variable ε1D does not

depend on N. The same reasoning applies to limn→∞ RN
ND −R1

ND. Then

RN −R1 = RN
ND −R1

ND + ε1D = ε1 (146)
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for n large, and

lim
n→∞



µ1
t − γσ2 −

n∑

j=1

λ̃j



 P 1(Ht)

x1
t (Ht)

= lim
n→∞



µN
t − γσ2 −

n∑

j=1

λ̃j



 P N(Ht)

xN
t (Ht)

+ ε1 (147)

where ε depends only on firm 1 and it is imperfectly correlated with µ1. Expression (147) shows that for the ‘Star’

network of Figure 2, an asymptotic three-fund separation holds.

Symmetrically Connected Network of Figure 1b.

In this case all firms are connected among each other, but the effect of a distress event on the rest of the firms

does not depend on the specific firm that experiences the distress. All firms are ‘central’ in an homogeneous way.

Without loss of generality, we model this network as follows:

λi(H) = k̃(H)λi, i = 1, 2, . . . , n (148)

λi(Hnd) = λi ∼ F λ(n), i = 1, . . . , n (149)

η(H) = η(Hnd) = ηi ∼ F η(n), i = 1, . . . , n (150)

k̃(H) =

{
knum(D(H)) if num(D(H)) ≤ nD

knD

otherwise
k > 1, (151)

If no firm is in distress (state Hnd), firm distress intensities are iid. If some firm is in distress, these intensities are

compounded as many times as firms in distress at a common gross rate k, up to a maximum number nD. As we

are considering limiting behaviors as n → ∞, and distress propagation needs to occur at bounded intensity, the

boundedness assumption is necessary.

For two arbitrary firms 1 and N , since in the generic state H1 and its paired H
1

the same number of firms are

in distress, expression (144) becomes:

lim
n→∞

RN
ND −R1

ND = lim
n→∞

n∑

j=1
j 6=1,N

(1 + k̃(Ht)1(Hj
t = 0))λ̃j(Ht)θ

j(Ht)

∞∑

u=0

e−a(tu−t)
∑

H1

U(H1, u)

U(H1, u) = k̃(H1)
[
Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)]
ε1(H1)

+
[
Prob

(
Htu

= Hi1
∣∣H±j

t

)
− Prob

(
Htu

= H
i1
∣∣∣H±j

t

)]
ε2(H1)

ε1(H1) =

{
0 if limn→∞ND(H1) = K < ∞

ε1 ∼ N(µ1, σ1) if limn→∞ ND(H1) = ∞

ε2(H1) =

{
0 if limn→∞D(H1) = K < ∞

ε2 ∼ N(µ2, σ2) if limn→∞ D(H1) = ∞ , (152)

We have

lim
n→∞

Prob
(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)
= 0 j = 1, . . . , n (153)
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We refer to the proof of Lemma 4. Terms 1 and 2 of (81) become

ptu−∆
t (H1+1)

(
1 − e−k̃(H1+1)λ1∆

)
− ptu−∆

t (H1+1)
(
1 − e−k̃(H1+1)λN ∆

)

︸ ︷︷ ︸
1

(154)

ptu−∆
t (H1−N)

(
1 − e−ηN ∆

)
− ptu−∆

t (H1−N)
(
1 − e−η1∆

)

︸ ︷︷ ︸
2

For n large, (122) implies λi2 ≈ λi1 ≈ ηi2 ≈ ηi1 ≈ 0, which together with the boundedness assumption (151) implies

term 1 ≈ term 2 ≈ 0. Terms 1 and 2 of (84) become

ptu−2∆
t (H1+1)

[(
1 − e−k̃(H1)λ1∆

)
e−[

P
v∈D(H1) ηv+

P
v∈ND(H1) k̃(H1)λv]∆

︸ ︷︷ ︸
(155)

−
(
1 − e−k̃(H1)λN∆

)
e−[

P
v∈D(H1) ηv+

P
v∈ND(H1) k̃(H1)λv]∆

]
λ∆

︸ ︷︷ ︸
1

(156)

+ ptu−2∆
t (H1−N)

[(
1 − e−ηN ∆

)
e−[

P
v∈D(H1) ηv+

P
v∈ND(H1) k̃(H1)λv]∆

︸ ︷︷ ︸
(157)

−
(
1 − e−η1∆

)
e−[

P
v∈D(H1) ηv+

P
v∈ND(H1) k̃(H1)λv]∆

]
λ∆

︸ ︷︷ ︸
2

(158)

In light of (122) and (151), terms 1 and 2 also vanish for n large. The same reasoning applies to terms 1-6 in

expression (84), and to the term of this type that arise from further backward substitutions (see the proof of

Lemma 4). The rest of the proof is unchanged. Since pt
t(H) = 0 for any H of the type H1 and H

1
, by the

assumption that firm 1 and N are not in distress in H±j
t , the limit (153) follows, and

lim
n→∞

RN
ND −R1

ND = 0, (159)

so that

lim
n→∞

RN −R1 =
∑

j=1,N

k̃(Ht)λ
jθj(Ht)

∞∑

u=0

e−a(tu−t)
∑

H1

{
k̃(H1)

[
Prob

(
Htu

= H1
∣∣H−j

t

)
(160)

−Prob
(
Htu

= H
1
∣∣∣H−j

t

)]
B1(H1)

+
[
Prob

(
Htu

= H1
∣∣H−j

t

)
− Prob

(
Htu

= H
1
∣∣∣H−j

t

)]
B2(H1)

}
(161)

We now show that

lim
n→∞

Prob
(
Htu

= Hi1
∣∣H−1

t

)
− Prob

(
Htu

= H
1
∣∣∣H−1

t

)

= − lim
n→∞

Prob
(
Htu

= H1
∣∣H−N

t

)
− Prob

(
Htu

= H
1
∣∣∣H−N

t

)
(162)

We proceed as with the proof of (127), starting from (81) – after the proper modifications: k = 1 outside of

exponentials, firm specific intensities of distress λik̃(Ht) and recovery ηi – and cancelling terms 1 and 2, then

cancelling terms 1-6 in(84), until we arrive at

ptu

t (Hi1) − ptu

t (Hi1) ≈ RHS of (86) (163)
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for n large. Term T 0(m, H) becomes

T 0(m, H) =






1 if m = 0

T 0(m − 1, H)e−[
P

v∈D(H) ηv+
P

v∈ND(H) k̃(H)λv]∆ otherwise
(164)

and similarly for higher order terms in (87)-(91). H−1
t is of the form H1, while H−N

t is of the form H
1
, therefore

letting m = n∆ on the RHS of (86) it must be

(∗) Prob
(
Htu

= H1
∣∣H−1

t

)
− Prob

(
Htu

= H
1
∣∣∣H−1

t

)
= T 0(m, H1)

(∗∗) Prob
(
Htu

= H1
∣∣H−N

t

)
− Prob

(
Htu

= H
1
∣∣∣H−N

t

)
= −T 0(m, H

1
)

or

(∗) =
∑

w1=+1,−1

∑

v1∈Sw1 (H1)
v1 6=l(w1)

T 1
w1

(m, H1, v1)

(∗∗) = −
∑

w1=+1,−1

∑

v1∈Sw1 (H
1
)

v1 6=l(w1)

T 1
w1

(m, H
1
, v1)

or

(∗) =
∑

w1=+1,−1

∑

v1∈Sw1 (H1)
v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H1+w1v1 )
v2 6=l(w2)

T 2
w1,w2

(m, H1, v1, v2)

(∗∗) = −
∑

w1=+1,−1

∑

v1∈Sw1 (H
1
)

v1 6=l(w1)

∑

w2=+1,−1

∑

v2∈Sw2 (H
1+w1v1)

v2 6=l(w2)

T 2
w1,w2

(m, H
1
, v1, v2)

or

. . .

. . . (165)

Notice that any set of the form Sw1(H1), excluding l(w1), coincides with Sw1 (H
1
) excluding l(w1). Notice also that

limn→∞ T 0(m, H1) = limn→∞ T 0(m, H
1
), limn→∞ T 1

w1
(m, H1, v1) = limn→∞ T 1

1 (m, H
1
, v1), and so on: consider-

ing expressions (87)-(91), we notice that terms of the form (1 − exp(−ωi∆)), ω = k̃(H)λ, η become independent

of the specific firm i because of (122) and (151). We can conclude that (162) holds. Considering expression

(135), it is clear that (162) and the fact that k̃(Ht)λ
1 ≈ k̃(Ht)λ

2 for n large (because of (122)) imply that

limn→∞RN ≈ limn→∞R1, and that an exact conditional one factor asymptotic structure holds for expected

returns of the assets that are not currently in distress.

Proof of Corollary 1. We use the notation of the proof of Proposition 3. We model a clustered economy with

n central firms as follows: G is the collection of central firms; each firm j ∈ G is central for his own subnetwork,

which is organized as in Figure 2. NGj denotes the collection of noncentral firms in the subnetwork of j, with

(NGj1

⋂NGj2) = ∅, j1, j2 ∈ G. Central firms are all symmetrically interconnected for simplicity, as in Figure 1b.
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We summarize this description as follows:

λi(H) = k̃i(H)λi, i = 1, 2, . . . , n (166)

λi = ∼ F λ(n), i = 1, . . . , n (167)

η(H) = ηi ∼ F η(n), i = 1, . . . , n (168)

k̃i(H) =

{∏
v∈Dc(H) k0 if i ∈ G

kj if i ∈ NGj

k0, kj > 1, j ∈ G. (169)

The number of central firms is independent of the economy size n. Dc(H) denotes the set of central firms that are

in distress in state H . Therefore each central distress event compounds the distress risk of other central firms at

some homogeneous rate k0. Noncentral firms are affected only by the distress of their ‘Star’. Assumption 3 and

Assumption 4 hold.

To identify an asymptotic factor structure of expected returns, we relate the risk premia of any two firms of

all possible types. As in Proposition 4 and Proposition 3, when we consider the risk premia of firms i and j, it is

convenient to decompose the space of possible states H into: i) paired states (Hi, H
i
) – i (j) is in distress in the

former (latter), but not in the latter (former), while the state of all other firms coincide –; ii) states H where both

i and j are not in distress; iii) states where they are both in distress. The following Lemma allows to concentrate

only on cases i) and ii).

Lemma 6. If firms i and j are both in distress in state H, then Ai(H) −Aj(H) = 0. If both are not in distress

in H, then

Ai(H) −Aj(H) =
(
k̃i(H)λi − k̃j(H)λj

)
∆
(
Ci(H−i) − Cj(H−i)

)
(170)

Proof. If i and j are both in distress, we have:

Ai(H) −Aj(H) =
∑

v∈ND(H)

k̃v(H)λv∆
[
ci(H−v) − cj(H−v) −

(
ci(H) − cj(H)

)]

−
∑

v∈D(H)
v 6=i,j

η∆
[
ci(H) − cj(H) −

(
ci(H+v) − cj(H+v)

)]
+ (1 − a)(ci(H) − cj(H))

− η∆
[
ci(H) − cj(H) −

(
ci(H+i) − cj(H+i)

)]
︸ ︷︷ ︸

1

− η∆
[
ci(H) − cj(H) −

(
ci(H+j) − cj(H+j)

)]
︸ ︷︷ ︸

2

(171)

ci(H) − cj(H) = 0, ci(H−v) − cj(H−v) = 0, ci(H+v) − cj(H+v) = 0, v 6= i, j, while terms 1 and 2 in (171) are

opposite, so that Ai(H) −Aj(H) = 0. If i and j are both not in distress, we have:

Ai(H) −Aj(H) =
∑

v∈ND(H)
v 6=i,j

k̃v(H)λv∆
[
ci(H−v) − cj(H−v) −

(
ci(H) − cj(H)

)]

−
∑

v∈D(H)

η∆
[
ci(H) − cj(H) −

(
ci(H+v) − cj(H+v)

)]
+ (1 − a)(ci(H) − cj(H))

− λik̃i(H)∆
[
ci(H) − cj(H) −

(
ci(H−i) − cj(H−i)

)]
︸ ︷︷ ︸

1

−λj k̃j(H) η∆
[
ci(H) − cj(H) −

(
ci(H−j) − cj(H−j)

)]
︸ ︷︷ ︸

2

(172)

Again ci(H) − cj(H) = 0, ci(H−v) − cj(H−v) = 0, ci(H+v) − cj(H+v) = 0, v 6= i, j. (170) follows adding terms 1

and 2 and taking into account that ci(H−i) − cj(H−i) = −(ci(H−j) − cj(H−j)). �

For ease of notation, we call firms 1 and N regardless of their type.

Firm 1 is central, Firm N is not
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Let Hd denote a generic state where firms 1 and N are both in distress. Adapting (107) of Proposition 3 to the

network characteristics reported in (166), keeping in mind the asymptotic homogeneity of dividends, and taking

Lemma 6 into account:

RN
ND −R1

ND =

n∑

v=j
j 6=1,N

λ̃j(Ht)θ
j (Ht)

∞∑

u=0

e−a(tu−t)

(
∑

H1

U1(H1, u) +
∑

Hd

U2(Hd, u)

)
(173)

U(H1, u) =
∑

u∈G
u 6=1

∑

v∈ND(H1)
v∈NGu

v 6=N

k̃v(H1)λv
[
Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)]
∆
(
cN (H1−v) − c1(H1−v)−

︸ ︷︷ ︸

(
cN(H1) − c1(H1)

))
︸ ︷︷ ︸

1

+
∑

v∈ND(H1)
v∈NG1
v 6=N

[
k1Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)]
λv∆

(
cN (H1−v) − c1(H1−v)

︸ ︷︷ ︸

−
(
cN(H1) − c1(H1)

))
︸ ︷︷ ︸

2

−
[
Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)]

︸ ︷︷ ︸
×

×
(
λN k̃N (H1) − λ1k̃1(H1)

) (
cN (H1) − c1(H1)

)
∆

︸ ︷︷ ︸
3

+
∑

v∈ND(H1)
v∈G
v 6=1

k̃v(H1)λv
[
Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)]
∆
(
cN(H1−v) − c1(H1−v)−

︸ ︷︷ ︸

(
cN (H1) − c1(H1)

))
︸ ︷︷ ︸

4

+
[
Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)]

︸ ︷︷ ︸
×

×
[
(1 − a)(cN (H1) − c1(H1)) − ∆

(
ηN cN(H1) − η1c1(H1)

)
︸ ︷︷ ︸

+
∑

v∈D(H1)
v 6=1

ηv∆
((

cN(H1+v) − c1(H1+v)
)
−
(
cN (H1) − c1(H1)

))





︸ ︷︷ ︸
5

U2(Hd, u) = Prob
(
Htu

= Hd|H±j
t

)(
k̃N(Hd)λ

N − k̃1(Hd)λ
1
)

∆
(
cN (H−N

d ) − c1(H−N
d )

)

We note that k̃i(H) < ∞, ∀n, i = 1, . . . , n, because the number of central firms, n, is bounded by assumption.

Notice that the characteristics of the specific subnetwork of firm N enter only in term 3, which is o(term 2) as

n → ∞. By Assumptions 3 and 4, and the fact that Prob
(
Htu

= H1
∣∣H±j

t

)
and Prob

(
Htu

= H1
∣∣H±j

t

)
converge

to a deterministic limit as n → ∞, terms 1, 2, 4, 5 are sums of independent random variables. We also assume

that the Linderg-Feller conditon holds. The Central Limit Theorem then guarantees asymptotic convergence of the

sum of these terms to a random variables which only depends on firm 1 characteristics, because of the asymptotic
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behavior of term 3. Thus

lim
n→∞

∑

H1

U1(H1, u) = ε1u,j(1) (174)

Due to Assumptions 1 and 4,
∑

Hd
U2(Hd, u) is a sum of independent random variables. By the Central Limit

Theorem argument already applied in Proposition 4:

lim
n→∞

∑

Hd

U2(Hd, u) = ε2u,j(1, N) ∼ N(µ2
u,j, σ

2
u,j) (175)

The random variable ε2u,j(1, N) in general takes positive and negative values with nonzero probability. Its distri-

bution depends on the centrality parameters ks. Thus, by means of (173), and again the Central Limit Theorem

argument

RN
ND −R1

ND ≈
n∑

v=j
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−a(tu−t)
(
ε1u,j(1) + ε2u,j(1, N)

)
(176)

for n large. (176) then implies that

lim
n→∞

RN −R1 = lim
n→∞

RN
ND −R1

ND +
∑

j=1,N

λ̃j(Ht)θ
j (Ht)

∞∑

u=0

e−a(tu−t)

(
∑

H1

U1(H1, u) +
∑

Hd

U2(Hd, u)

)
(177)

Due to Assumption 4 λ̃1 ≈ λ̃N ≈ 0 for n large, while
(∑

H1 U1(H1, u) +
∑

Hd
U2(Hd, u)

)
converge to a random

variable that is bounded P−a.s, by virtue of Assumptions 3 and 4. We conclude that

lim
n→∞

RN −R1 =

n∑

v=j
j 6=1,N

λ̃j(Ht)θ
j (Ht)

∞∑

u=0

e−a(tu−t)
(
ε1u,j(1) + ε2u,j(1, N)

)
(178)

Firm 1 is central, Firm N is central (173) becomes

RN
ND −R1

ND =
n∑

v=j
j 6=1,N

λ̃j(Ht)θ
j (Ht)

∞∑

u=0

e−a(tu−t)

(
∑

H1

U1(H1, u) +
∑

Hd

U2(Hd, u)

)
(179)
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U(H1, u) =
∑

u∈G
u 6=1,N

∑

v∈ND(H1)
v∈NGu

k̃v(H1)λv
[
Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)]
∆
(
cN(H1−v) − c1(H1−v)−

︸ ︷︷ ︸

(
cN(H1) − c1(H1)

))
︸ ︷︷ ︸

1

+
∑

v∈ND(H1)
v∈NG1

[
k1Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)]
λv∆

(
cN (H1−v) − c1(H1−v)

︸ ︷︷ ︸

−
(
cN (H1) − c1(H1)

))
︸ ︷︷ ︸

2

+
∑

v∈ND(H1)
v∈NGN

[
Prob

(
Htu

= H1
∣∣H±j

t

)
− kNProb

(
Htu

= H
1
∣∣∣H±j

t

)]
λv∆

(
cN (H1−v) − c1(H1−v)

︸ ︷︷ ︸

−
(
cN(H1) − c1(H1)

))
︸ ︷︷ ︸

3

−
[
Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)] (
λN k̃N (H1) − λ1k̃1(H1)

)
×

︸ ︷︷ ︸

×
(
cN(H1) − c1(H1)

)
∆

︸ ︷︷ ︸
4

+
∑

v∈ND(H1)
v∈G

v 6=1,N

k̃v(H1)λv
[
Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)]
∆×

︸ ︷︷ ︸

×
(
cN (H1−v) − c1(H1−v) −

(
cN(H1) − c1(H1)

))
︸ ︷︷ ︸

5

+
[
Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)]

︸ ︷︷ ︸
×

×
[
(1 − a)(cN(H1) − c1(H1)) − ∆

(
ηN cN (H1) − η1c1(H1)

)
︸ ︷︷ ︸

+
∑

v∈D(H1)
v 6=1

ηv∆
((

cN(H1+v) − c1(H1+v)
)
−
(
cN (H1) − c1(H1)

))





︸ ︷︷ ︸
6

U2(Hd, u) = Prob
(
Htu

= Hd|H±j
t

)(
k̃N(Hd)λ

N − k̃1(Hd)λ
1
)

∆
(
cN (H−N

d ) − c1(H−N
d )

)

Due to terms 2 and 3, Assumptions 3 and 4 allow to apply the Central Limit Theorem, which guarantees convergence

of U1(H1, u) to a random variable – or more correctly, to a sum of random variables – that depends on the

characteristics of the central firms 1 and N. Taking into account that λ1 ≈ λN ≈ 0 for n large, we have :

lim
n→∞

RN −R1 = lim
n→∞

RN
ND −R1

ND +
∑

j=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−a(tu−t)
∑

H1

U1(H1, u)

= lim
n→∞

RN
ND −R1

ND =

n∑

v=j
j 6=1,N

λ̃j(Ht)θ
j (Ht)

∞∑

u=0

e−a(tu−t)ε3u,j(1, N) (180)

Firm 1 is not central, Firm N is not central (173) becomes

RN
ND −R1

ND =

n∑

v=j
j 6=1,N

λ̃j(Ht)θ
j (Ht)

∞∑

u=0

e−a(tu−t)

(
∑

H1

U1(H1, u) +
∑

Hd

U2(Hd, u)

)
(181)
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U(H1, u) =
∑

v∈ND(H1)
v 6=N

k̃v(H1)λv
[
Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)]
∆
(
cN(H1−v) − c1(H1−v)−

︸ ︷︷ ︸

(
cN(H1) − c1(H1)

))
︸ ︷︷ ︸

1

−
[
Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)] (
λN k̃N (H1) − λ1k̃1(H1)

) (
cN (H1) − c1(H1)

)
∆

︸ ︷︷ ︸
2

+
[
Prob

(
Htu

= H1
∣∣H±j

t

)
− Prob

(
Htu

= H
1
∣∣∣H±j

t

)] [
(1 − a)(cN(H1) − c1(H1)) − ∆

(
ηNcN (H1) − η1c1(H1)

)

︸ ︷︷ ︸

+
∑

v∈D(H1)
v 6=1

ηv∆
((

cN(H1+v) − c1(H1+v)
)
−
(
cN (H1) − c1(H1)

))





︸ ︷︷ ︸
3

U2(Hd, u) = Prob
(
Htu

= Hd|H±j
t

)(
k̃N(Hd)λ

N − k̃1(Hd)λ
1
)

∆
(
cN (H−N

d ) − c1(H−N
d )

)

Notice that term 2 is o(term 1) for n → ∞, while applying previous arguments, terms 1 and 3 converge to a random

variable that doesn’t depend on the firm 1 and N’s subnetwork. On the other hand:

lim
n→∞

∑

Hd

U2(Hd, u) = ε4u,j(1, N) ∼ N(µ4
u,j, σ

4
u,j) (182)

where ε4u,j(1, N) in nonnegative P − a.s. if kN ≤ k1. Summarizing:

lim
n→∞

RN −R1 = lim
n→∞

RN
ND −R1

ND +
∑

j=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−a(tu−t)

(
∑

H1

U1(H1, u) +
∑

Hd

U2(Hd, u)

)

= lim
n→∞

RN
ND −R1

ND =

n∑

v=j
j 6=1,N

λ̃j(Ht)θ
j(Ht)

∞∑

u=0

e−a(tu−t), ε4u,j(1, N) (183)

after taking into account that, due to Assumption 4, λ̃1 ≈ λ̃N ≈ 0 for n large, while
(∑

H1 U1(H1, u) +
∑

Hd
U2(Hd, u)

)

converge to a random variable that is bounded P−a.s.

Substituting (178), then (180), then (183) into expression (125) for the risk premium, we realize that the risk

premium of firm i, can be expressed as a linear combination of the risk premium of firm j and of an additional

random variable ε(i, j)

lim
n→∞

[
µi

t − γσ2 −
n∑

v=1

λ̃v

]
P i(Ht)

xi
t(Ht)

= lim
n→∞

[
µj

t − γσ2 −
n∑

v=1

λ̃v

]
P j(Ht)

xj
t(Ht)

+ ε(i, j) (184)

ε(i, j) depends on firm i’s and j’s type: on the specific firms if they are central, on their subnetwork if they

are not central. Since any two ε(i1, j1) and ε(i2, j2) are imperfectly correlated, there are n central firms and n

subnetworks, any risk premium can be expressed as a linear combination of 2n other risk premia, and a 2n+1-factor

representation holds.
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Appendix B

Calibration procedure in Section V. We use historical data on real output of US domestic industries, from

1972 to 2010, published by the US Bureau of Labor Statistics. We group data into the n = 9 sectors reported

in Table IX. We combine this information with the industry-by-industry total requirements table for 2010, part

of the NIPA Tables published by the Bureau of Economic Analysis. The industry-by-industry requirement is the

production required, both directly and indirectly, from some industry industry, per dollar of delivery to final use

of a given industry. We assume that the percentage requirements in 2010 are representative of the whole sample.

Parameters are calibrated as follows:

• The transition intensities of the business cycle factor are kl = 1.2616 and kh = 0.3911, obtained as described

in Section VI.B.

• We build the network connections as follows. Let λi
0 = λi(0, H0), i = 1, 2, . . . , n + 1 denote the distress

intensity of firm i in the boom state, when no firm is in distress, as H0 = (0, 0, . . . , 0)′. If a sector experiences a

distress, the other sectors’ intensities increase, relative to the disconnected case, in percentage of the fraction

of their total output required from the distressed sector. The effect is additive, meaning that when more

sectors are in distress we sum the individual requirements to obtain the corresponding increase in λ. In

other words:

λi(0, H) = λi
0



1 +

n∑

j=1,j 6=i

Hi re(j, i)∑
u=1n re(u, i)



 i = 1, n (185)

where re(j, i) denotes the requirement of industry i from industry j. We assume for simplicity that the last

sector – comprising the remaining ones – is not connected, so that its distress intensity is λ10(0, H) = λ10
0 ,

∀H.

During a recession, the distress intensity increases by 25%: λi(1, H) = 1.25λi(0, H0). For simplicity, the

recovery intensities are ηi(0, H) = λi(1, H0), and ηi(1, H) = λi(0, H0).

• The intensities conditional on no distress, λi
0, the logarithmic dividend jump sizes, J i, i = 1, 2, . . . , n + 1,

and the mean (µ) and volatility (σ) of the common diffusive component Y , remain to be determined. To

this end, we use the method moments with 2n + 4 moment conditions, as many as unknown parameters.

The moments used are the unconditional yearly dividend growth (in logarithms), the unconditional variance

of yearly dividend growth, for each of the n + 1 endowments, and the unconditional third central moment

of dividend growth only for the first two industries. The theoretical moments read:

mi
1 = E

[
log Di

t+1y − logDi
t

]
= π′E

[
log Di

t+1y − logDi
t

∣∣H
]

=

(
µ − 1

2
σ2

)

+ π′E

[∫ t+1y

t

(
J iHi

udH i
u − J i(1 − Hi

u)
)
dH i

u

∣∣∣∣Ht

]
=

(
µ − 1

2
σ2

)
+

π′E

[∫ t+1y

t

(
J iHi

uηi(Su, Hu) − J i(1 − Hi
u)λi(Su, Hu)

)
du

∣∣∣∣Ht

]
=

(
µ − 1

2
σ2

)
+π′

∫ t+1y

t

exp
(
−AH(s − t)

)
dsCλ

i = 1, 2, . . . , n + 1 (186)
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mi
z = E

[
(log Di

t+1y − log Di
t − mi

1)
z
]

= π′E
[
(log Di

t+1y − logDi
t − mi

1)
z
∣∣H
]

=

σ21(z = 2) + π′E

[∫ t+1y

t

(
(J i)zHi

udH i
u + (1/J i)z(1 − Hi

u)
)
dH i

u

∣∣∣∣Ht

]
=

σ21(z = 2) + π′E

[∫ t+1y

t

(
(J i)zHi

uηi(Su, Hu) − (1/J i)z(1 − Hi
u)λi(Su, Hu)

)
du

∣∣∣∣Ht

]
=

σ21(z = 2) + π′

∫ t+1y

t

exp
(
−AH(s − t)

)
dsCλ

z z = 2, 3 (187)

where we have used the dividend dynamics (3) to explicit logarithmic dividend growth. The transition

matrix −AH is reported in (41). π is the vector of steady state probabilities for the firms implies by −AH ,

as detailed in (55). Cλ is a 2 × 2n+1 vector, with entry corresponding to state H and S = 0 given by(
J iHi

uηi(0, H) − J i(1 − Hi
u)λi(0, H)

)
. The entry corresponding to H and S = 1 immediately follows the

latter. Cλ
z is similarly defined, with entries:

(
(J i)zHi

uηi(S, H) + (1/J i)z(1 − Hi
u)λi(S, H)

)
. Thus the set of

moment conditions read



mi
1 −

1

m

m∑

j=2

log D̂i
j − log D̂i

j−1 , mi
z − 1

m

m∑

j=2

(
log D̂i

j − log D̂i
j−1 − m̂i

1

)z





(i = 1, 2, . . . , n + 1 for z = 2), (i = 1, 2 for z = 3) (188)

where D̂ denotes a sector output series, and m̂i
1 is the sample mean of logarithmic output growth.

• When we simulate asset prices from this economy, we set the risk aversion to γ = 3.5, and the subjective

discount rate to δ = 0.03.

Estimation procedure. Given trees (i, j), under the agent’s observation filtration their dividend processes follow

dDz
t

Dz
t

= µzdt + σzdBz
t + (e−Y 1

z − 1)(1 − Hz
t )dHz

t − (eY 2
z − 1)Hz

t dHz
t z = i, j dBi

tdBj
t = ρ (189)

Hz
t is a two-state continuous-time Markov chain with transition intensities

λ̂z
t = ph

t λz(0, Hi
t, H

j
t ) + (1 − ph

t )λz(1, Hi
t, H

j
t ) (190)

η̂z
t = ph

t ηz(0, Hi
t, H

j
t ) + (1 − ph

t )ηz(1, Hi
t, H

j
t ) (191)

under the posterior belief. The latter evolves as

dph
t =

[
kl − (kl + kh)ph

t

]
dt + ph

t (1 − ph
t )
∑

z=i,j

[
λz(1, Hi

t−, Hj
t−) − λz(0, Hi

t−, Hj
t−)
]
×

× (1 − Hz
t−)(dHz

t − λ̂z) +
[
ηz(1, Hi

t−, Hj
t−) − ηz(0, Hi

t−, Hj
t−)
]
Hz

t−(dHz
t − η̂z) (192)

Let nd(ω, t, t + 1) (nr) denote the number of distress (recovery) jumps occurred in sample path ω between t and

t + 1. Conditional on this sample path, the random variables

yz
t+1 = logDz

t+1 − log Dz
t −

(
µz − σ2

2

)
1

4
+




nd(ω,t,t+1)∑

−Y 1
z +

nr(ω,t,t+1)∑
Y 2

z



 z = i, j (193)

are jointly distributed as:

(yi
t+1, y

j
t+1|ω) ∼ N

([
0

0

]
,

[
σi2 σiσjρ

σiσjρ σj2

]
1

4

)
(194)
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We don’t observe the distress events nor the posterior beliefs that determine their intensities in the agent’s filtration.

Knowing agent’s updating rule (192), and for a prior belief p0 = kh/(kh + kl) equal to the stationary probability

of a recession, we fix a given parameter set and simulate a trajectory of distress/recovery events and beliefs. We

estimate parameters by maximum likelihood using the likelihood of the filtered continuous component of dividend

growth, obtained subtracting the simulated events out of dividend growth. Thus we infer the posterior belief of

the agent as the simulated trajectory ω corresponding to the following maximum likelihood parameter estimate.24

θ∗ = arg max
θ

N−1∑

t=0

log φ(ŷi+1
t , ŷj

t+1|ω, θ)

where φ(ŷi
t, ŷ

j
t |ω, θ) is the bivariate pdf (194) evaluated at the data, for a given parameter set θ, and a trajectory

of distresses and beliefs ω simulated under the parameter set θ with standard schemes.25

Standard Errors. We obtain parameters’ standard errors using the asymptotic distribution of the estimates,

following the arguments of Brandt and Santa-Clara (2002):

• Let φ∆(yi
t+1, y

j
t+1|ω, θ) denote the transition density of (yi

t+1, y
j
t+1) in (193), when beliefs and log dividend

growth jumps follow the discretized process (197) and (198)-(199) used to simulate them, with time step

size ∆:

yz
t+1 = logDz

t+1 − log Dz
t − (µz − σ2

z

2
)
1

4
−




ndz(ω,t,t+1)∑

−Y z
1 +

nrz(ω,t,t+1)∑
Y z

2





z = i, j t = 0, 1, . . .N − 1 (196)

ph
s+1 =

[
kl − (kl + kh)ph

s

]
∆ + ph

s (1 − ph
s )
∑

z=i,j

(λz(1, Hi
s, H

j
s) − λz(0, Hi

s, H
j
s))(1 − Hz

s )×

×
[
1
(
exp(−λ̂z∆) < us

)
− λ̂z

]
+ (ηz(1, Hi

s, H
j
s) − ηz(0, Hi

s, H
j
s))Hz

s×

× [1 (exp(−η̂z∆) < us) − η̂z] (197)

N is the number of quarters in the sample. Since a quarter separates t and t+1, and a year is discretized into

1/∆ steps, s ranges from 0 to N/(4∆). us is iid uniformly distributed on [0,1]. The posterior intensities of

distress and recovery at time s read λ̂z
s = psλ

z(0, Hi
s, H

j
s)+(1−ps)λ

z(1, Hi
s, H

j
s) and η̂z

s = psη
z(0, Hi

s, H
j
s)+

(1−ps)η
z(1, Hi

s, H
j
s). ndz(ω, t, t+1) and nrz(ω, t, t+1), the number of distress and recoveries of tree z = i, j

24We have also inspected a methodology that selects the belief and distress trajectory as the most likely to
have generated the dividend observations, among as many as possible. Namely the maximum likelihood parameter
estimate is:

θ∗ = arg max
θ

max
wi

N∑

t=1

log φ(ŷi
t, ŷ

j
t |ωi, θ) (195)

This approach basically treats the belief and distress sample realization as an infinite dimensional parameter,
constrained to be generated by a given distribution. It is computationally cumbersome and, according to limited
investigation, has led to similar results.

25Note that except for kh and kl, which are separaterly determined , no parameter is common to any pairwise
estimation, since the intensities of distress and recovery are contingent to the state of the other tree in the procedure,
and all tree couples are distinct.
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occurred in sample path ω between t and t + 1, read:

ndz(ω, t, t + 1) =

t+ 1
4∆∑

s=t

(1 − Hz
s )1

(
exp(−λ̂z∆) < us

)
(198)

nrz(ω, t, t + 1) =

t+ 1
4∆∑

s=t

Hz
s1 (exp(−η̂z∆) < us) (199)

The convergence of discretization schemes for stochastic differential equations (see Glasserman (2004)) im-

plies that

plim∆t→0 φ∆(yi
t+1, y

j
t+1|ω, θ) = φ(yi

t+1, y
j
t+1|ω, θ) (200)

≡ N

([
(µi − σ2

i

2
)1
4

(µj − σ2
j

2
)1
4

]
,

[
σ2

i σiσjρ

σiσjρ σ2
j

]
1

4

)
(201)

where the last term is the transition density of (yi
t+1, y

j
t+1) in (193) when beliefs and log dividend growth

jumps follow their true continuous-time process.

• Let ω denote any sample path and ω∗ denote the true, unobservable history of distress/recovery events and

beliefs. The strong stationarity of the log dividend growth process d log(Dt), with dDt as in (189), and of

the posterior belief process (192), implies that

plimt→∞ φ(yi
t+1, y

j
t+1|ω, θ) = φ(yi

t+1, y
j
t+1|ω∗, θ) (202)

where the rhs denotes the likelihood corresponding to the true to the true (observable) distress/belief real-

izations. Moreover, since (yi
t+1, y

j
t+1) is iid in time, by the Central Limit Theorem as t → ∞ we have

√
t[φ(yi

t+1, y
j
t+1|ω, θ) − φ(yi

t+1, y
j
t+1|ω∗, θ)] ∼ N(0, var[φ(yi

t, y
j
t |ωi, θ)]))

• By virtue of (201) and (202), we have

plimt→∞,∆t→0 φδ(yi
t+1, y

j
t+1|ω, θ) = φ(yi

t+1, y
j
t+1|ω∗, θ) (203)

• According to Lemma 4 and Lemma 5 in Brandt and Santa-Clara (2002), asymptotic convergence of the

likelihood function can be shown, namely:

plimN→∞,∆t→0

N∑

t=0

logφ∆(yi
t, y

j
t |ω, θ) =

N∑

t=0

log φ(yi
t, y

j
t |ω∗, θ)

Furthermore, the parameter set maximizing the simulated likelihood, θ̂∆, converges in probability to the

maximizer of the true likelihood, θ̂.
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• We can then rely on the asymptotic theory of the full information case to show that, as N → ∞ and ∆t → 0

(θ̂ − θ0) ∼ N(0, I−1(θ0)), I(θ0) = E

[
N∑

t=0

∂ logφ(yi
t+1, y

j
t+1|ω∗, θ)

∂θ

∂ log φ(yi
t+1, y

j
t+1|ω∗, θ)

∂θ

′]

where I is the Fisher information matrix.

To estimate I(θ̂), we obtain the gradient sample path corresponding to ω by finite difference, where the

likelihood corresponding to parameter perturbations θ̂ − ε and θ̂ + ε are obtained using the same innovations

for distress/belief simulations used for parameter estimation. The unconditional expectation is approximated

by a paired bootstrap-simulation procedure: bootstrap to marginalize with respect to dividends exploiting their

observability, Monte-Carlo simulation to marginalize with respect to unobservable distress/recovery events and

beliefs. We have

E[
∂ logφ(yi

t, y
j
t |ωi, θ̂)

∂θ

′
∂ log φ(yi

t, y
j
t |ωi, θ̂)

∂θ
] ≈ 1

SA

SA∑

u=1

∂ logφ(yi
ut, y

j
ut|ωi, θ̂)

∂θ

′
∂ logφ(yi

ut, y
j
ut|ωi, θ̂)

∂θ
(204)

In each of the SA samples, a dividend growth series obtained with a moving block bootstrap (Politis and Romano

(1992)) from the original series is combined with a beliefs/events series simulated with the discretization schemes.26

Simulation procedure to assess Error-in-Variables biases. Assuming that CAPM betas and exogeneity

measures E1m.

i have independent estimation errors, we extract n = 2000 independent samples of post-ranking

portfolio betas and portfolio dividend-growth parameters from their respective asymptotic distributions:

β̃i
j = β̂j + sβj

εi
j j = 1, . . . , 100 i = 1, . . . , n (205)

θ̃i
jz = θ̂jz + S′

θjz
· ui

jz j, z = 1, . . . , 16 j 6= z i = 1, . . . , n (206)

β̂j is the post-ranking beta estimate for portfolio j, obtained from a time-series regression of its excess returns

on market excess returns on the whole sample. Portfolio j is one of the 100 beta-size. sβj
is the asymptotic

standard deviation of β̂j and εi
j ∼ N(0, 1). θ̂jz is the dividend-growth parameters vector (195) obtained in the

pairwise estimation on portfolios j and z. j and z are distinct portfolios among the 16 beta-size sorted on which we

have estimated the structural model. Sθjz
is the factor in the Cholesky decomposition of the inverse of the Fisher

information matrix (204), and ui
jz ∼ N(0, 1). From θ̃i

jz, we obtain the i−th sampled exogeneity measure as in (18).

We then assign betas and exogeneities to the individual stocks and repeat the Fama-McBeth regressions. Iterating

for all n = 2000 parameters samples, we obtain an empirical distribution for the slopes and for their Fama-McBeth

t-statistics implied by measurement errors in variables.

26We have used a 5-quarters block size in the moving block bootstrap.
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Table I – Post ranking betas

Panel 1
Post ranking betas: market beta-size deciles

ME avg β-1 β-2 β-3 β-4

β avg 0.97528 0.88891 1.02157 1.15979
ME- 1 1.58197 1.83754 1.08489 1.12965 1.58519
ME- 2 1.51028 0.90229 1.30433 1.46210 1.32642

ME- 3 1.34316 0.75287 0.93142 1.22465 1.34157
ME- 4 1.33726 1.12345 0.77815 1.06159 1.08398

ME- 5 1.32206 0.88418 0.93034 0.99587 1.25346
ME- 6 1.28896 0.97540 0.87045 0.99541 1.07308

ME- 7 1.26103 0.93300 0.78632 0.96284 1.13245
ME- 8 1.20495 0.79297 0.79869 0.84713 1.00299

ME- 9 1.13947 0.83599 0.73546 0.81013 0.95171
ME-10 1.04158 0.71515 0.66905 0.72632 0.84706

β-5 β-6 β-7 β-8 β-9 β-10

β avg 1.21445 1.33161 1.40269 1.53384 1.66731 1.83526
ME- 1 1.42728 1.79499 1.65703 1.67928 1.51482 2.10907

ME- 2 1.44504 1.44612 1.59326 1.87417 1.86161 1.88746
ME- 3 1.28562 1.39570 1.47167 1.70486 1.86597 1.45724

ME- 4 1.26397 1.41133 1.44458 1.53519 1.78473 1.88564
ME- 5 1.27834 1.38266 1.42673 1.53899 1.67694 1.85309
ME- 6 1.17294 1.19467 1.41066 1.52175 1.76894 1.90633

ME- 7 1.20313 1.27583 1.26726 1.47736 1.63730 1.93478
ME- 8 1.11154 1.18537 1.30896 1.40619 1.69465 1.90096

ME- 9 1.05148 1.18596 1.25996 1.35501 1.45455 1.75446
ME-10 0.90518 1.04348 1.18678 1.24563 1.41356 1.66360

Panel 2
Post ranking betas: BE/ME deciles

BE/ME-1 BE/ME-2 BE/ME-3 BE/ME-4 BE/ME-5

1.53270 1.46637 1.30274 1.21803 1.16232

BE/ME-6 BE/ME-7 BE/ME-8 BE/ME-9 BE/ME-10
1.12021 1.10391 1.20164 1.26708 1.62674
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Table II – Average monthly returns of beta-size sorted portfolios

Panel 1
Average monthly returns, July 1963-June 2008: market beta-size deciles

ME avg β − 1 β − 2 β − 3 β − 4

β avg 0.026813 0.017856 0.019688 0.018645
ME - 1 0.056345 0.102945 0.054320 0.060361 0.051114
ME - 2 0.033092 0.040786 0.031486 0.041324 0.027683

ME - 3 0.023833 0.034411 0.018815 0.021345 0.029494
ME - 4 0.018098 0.022097 0.019318 0.016769 0.018219

ME - 5 0.014555 0.019142 0.012753 0.013673 0.014885
ME - 6 0.011201 0.011110 0.009002 0.011347 0.012683

ME - 7 0.010222 0.010447 0.010373 0.010262 0.011142
ME - 8 0.008572 0.011159 0.008286 0.008215 0.008724

ME - 9 0.007957 0.009522 0.008595 0.008515 0.007809
ME - 10 0.004466 0.006507 0.005609 0.005070 0.004700

β − 5 β − 6 β − 7 β − 8 β − 9 β − 10

β avg 0.018449 0.017880 0.015829 0.016051 0.016296 0.020834
ME - 1 0.050966 0.057902 0.044284 0.045479 0.042596 0.053482

ME - 2 0.038617 0.025836 0.022291 0.030116 0.030117 0.042663
ME - 3 0.018944 0.022313 0.020160 0.019008 0.018385 0.035451

ME - 4 0.018039 0.015908 0.015951 0.014532 0.020035 0.020116
ME - 5 0.020343 0.014244 0.011708 0.012506 0.013020 0.013275
ME - 6 0.009549 0.012666 0.011353 0.009763 0.008461 0.016073

ME - 7 0.008655 0.009947 0.012560 0.010376 0.009352 0.009105
ME - 8 0.007723 0.006859 0.008037 0.008330 0.010601 0.007783

ME - 9 0.007059 0.008841 0.008214 0.007370 0.005851 0.007799
ME - 10 0.004597 0.004283 0.003735 0.003031 0.004536 0.002597

Panel 2
Average monthly returns, July 1963-June 2008: BE/ME deciles

BE/ME-1 BE/ME-2 BE/ME-3 BE/ME-4 BE/ME-5 BE/ME-6 BE/ME-7

0.009868 0.012946 0.009243 0.010183 0.010792 0.012064 0.013736

BE/ME-8 BE/ME-9 BE/ME-10
0.017498 0.021388 0.082819
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Table III – 1 month
dynamic centrality measures of beta-size sorted portfolios. Average monthly returns of 5 value-weighted
portfolios, formed after sorting stocks according to their (beta-size sorted) portfolio’s dynamic centrality.
Monthly returns (Rls

t ) of a portfolio long the last and short the first quartile of the centrality distribution are
regressed (from July 1963 to June 2007) on an intercept, the market excess return, the HML and SMB factors.

Panel 1. 1-month dynamic centrality of beta-size sorted portfolios

β − 1 β − 2 β − 3 β − 4
ME - 1 3692.75 -29.33 -384.57 12965.45

ME - 2 199.42 1471.52 757.74 3253.19
ME - 3 159.60 244.60 486.73 1583.43

ME - 4 -17.65 -20.42 -7.90 -1812.56

Panel 2. Dynamic centrality sorted portfolios

a) Average monthly returns, July 1963-June 2008

DCτ
-1 DCτ

-2 DCτ
-3 DCτ

-4 DCτ
-5

0.00483 0.00522 0.0106 0.0116 0.0219

b) Long-short portfolio returns:
Rls

t = α + β(Rm
t − rt) + βhmlHMLt + βsmbSMBt + εt

α β βhml βsmb R2

0.0126
(7.5)

0.069
(1.64)

0.185
(2.94)

1.421
(26.04)

58.6%
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Table IV
– Time series averages of slopes in Fama-McBeth regressions for monthly returns of stocks. Betas and exogeneity measures are computed after double
sorting stocks into beta-size deciles and BM/ME-size deciles. In parenthesis: t-stats, computed with time series standard deviations of coefficients.

Average Slopes of Fama-McBeth regressions, July 1963-June 2008

Model 1 2 3 4 5 6
Factors

beta-size sorted portfolios

β
0.0025
(0.87)

0.00372
(1.317)

0.0087
(3.01)

0.0196
(6.362)

log(ME)
−0.00454
(−8.21)

−0.00484
(−9.112)

BE/ME
0.0031
(6.835)

0.0031
(6.835)

0.0031
(6.90)

0.0031
(6.946)

DC1m.
/1000

0.00054
(2.12)

0.00152
(6.21)

0.0025
(6.96)

R2 avg
6.23%

(std : 13.40%)
6.09%

(std : 13.42%)
5.60%

(std : 13.43%)
0.53%

(std : 1.03%)
1.05%

(std : 2.14%)
4.28%

(std : 13.56%)
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Table V – Summary statistics of the simulated distribution of (time-series)
average slopes and t-statistics of the second stage Fama-McBeth regressions for beta-size sorted portfolios.

The cross-sectional model of returns tested is: Rj = a + b1βj + b2(BE/ME)j + b3 log(MEj) + b4DC1m

j + εj.
Mode slopes and t-statistics are computed with a kernel density estimation, using a Gaussian kernel and

the following bandwidths: β slope: 0.00037; DC1m
slope: 0.0039; β t-stat: 0.1234; DC1m

t-stat: 0.1831.

Monte-Carlo slopes and t-statistics of Fama-McBeth regressions
adjusted for error-in-variables, July 1963-June 2008

β DC1m
/1000

avg slope 0.0033 0.00059

median slope 0.0033 0.00063

mode slope 0.0035 0.00065

slope std. 0.0017 0.00017

slope 5%(95%)-ile 0.00031 (0.0060) 0.00026 (0.00078)

avg t-stat 1.187 1.869

median t-stat 1.247 1.982

mode t-stat 1.4027 2.072

t-stat std. 0.583 0.578

t-stat 5%(95%)-ile 0.1301 (2.053) 0.92 (2.43)
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Table VI – Average monthly returns
and performance attribution regression of 4 long-short portfolios, each formed of stocks in the same average
incoming correlation quartile Θj, j = 1, . . . , 4. The portfolio bought (sold) is composed of quartiles of stocks
whose most connected trees had the best (worst) returns in the previous month. See Section D.D.1 for details
of portfolio formation. The sample period is July 1963-June 2008. T-statistics are in parenthesis. Long-short
portfolio returns are regressed in time on an intercept, the market excess return, the HML and SMB factors.

Returns on long-short portfolios formed according to incoming
network connectivity, July 1963-June 2008

Θj Avg. return α β βsmb βhml R2

y=1
0.01851

(4.622)

0.0176

(4.297)

0.0550

(0.539)

0.3941

(2.9678)

−0.0629

(−0.41)
2.32%

y=2
0.0025
(1.663)

0.0026
(1.730)

−0.0427
(−1.100)

0.072
(1.433)

−0.0378
(−0.65)

0.58%

y=3
0.0033
(1.559)

0.0042
(1.892)

−0.0512
(−0.929)

−0.157
(−2.205)

−0.0525
(−0.63)

1.30%

y=4
0.0092

(2.561)

0.00955

(2.561)

−0.127

(−1.368)

0.0963

(0.796)

0.0101

(−0.072)
0.438%
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Table VII – Time series
averages of slopes in Fama-McBeth regressions for monthly returns of stocks. Factors xi,cove,size, cove = h, l,
size = s, m1, m2, b (as defined in equation (20) ) and controls β, BE/ME, MTCONT., REV are com-
puted for stocks in the beta-size sorted portfolios, intersected with analyst coverage information from the
I/B/E/S database. In parenthesis: t-stats, computed with time series standard deviations of coefficients.

Average Slopes of Fama-McBeth regressions, July 1983-June 2008

Size Coverage Factors 1 2 3

s
l xi,l,s 0.325

(2.186)

0.357

(2.332)

0.501

(2.784)

h xi,h,s −23.05
(−0.909)

−22.71
(−0.913)

−23.22
(−0.896)

m1

l xi,l,m1
0.0228
(0.258)

0.0336
(0.398)

0.076
(0.850)

h xi,h,m1
0.056

(0.389)

0.0688

(0.501)

0.1233

(0.897)

m2

l xi,l,m2
−0.069

(−0.787)

−0.0684

(−0.843)

−0.0745

(−0.834)

h xi,h,m2
−0.129

(−1.475)
−0.138

(−1.710)
−0.140

(−1.595)

b
l xi,l,b −0.102

(−0.880)
−0.124

(−1.196)
−0.207

(−1.814)

h xi,h,b −0.165

(−1.405)

−0.195

(−1.839)

−0.270

(−2.366)

β,BE/ME yes yes no

REV ,MTCONT. yes no no

R2 4.995%

(7.99%)

3.90%

(7.01%)

0.87%

(1.65%)
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Table VIII – Two-trees
economy of section II.B. Panel 1 reports the state-contingent intensities of positive and negative endowment
jumps of the Manufacturing (M) and the Banking (B) sector. ND means no distress, D means distress. S = 0
is the boom state, S = 1 is the recession state. Panel 2 gives a schematic representation of the economy. Panel
3 reports a 30-year trajectory of the posterior probability that both sectors will have a distress transition in
1 year. When M and B are not connected, intensities assume in all states the value they have in (ND, ND).

Panel 1

(B,M) (ND,ND) (D,ND) (ND,D) (D,D)

λM S = 0 S = 1

0.2 0.4

S = 0 S = 1

0.6 1.8
- -

λB S = 0 S = 1

0.1 0.16
-

S = 0 S = 1

0.2 0.6
-

ηM - -
S = 0 S = 1

0.4 0.2

S = 0 S = 1

0.4 0.2

ηB -
S = 0 S = 1

0.4 0.2
-

S = 0 S = 1

0.4 0.4

Panel 2

 ! " # $ " % & ! " ' ( ! ) * ' + $ " %

, - - .

/ 0 1 0 2 2 3 - 4

 ! " # $ " % & ! " ' ( ! ) * ' + $ " %

Panel 3

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

years

1
−

y
e

a
r 

p
ro

b
 b

o
th

 i
n
 d

is
tr

e
s
s

 

 
M and B are not connected

M and B are connected

70



Table IX – Panel
1 reports expected returns and exogeneity measures obtained from returns, dividends and beliefs simulated
from the model, for the 10 trees economy described in Section V.A. It also reports the average returns and
t-statistics of a portfolio long the sectors with largest dynamic centrality and short those with the smallest.
Panel 2 plots expected returns-dynamic centrality pairs for each Sector, as well as a fitted linear model.

Panel 1

Sector Expected Return DC1month

i

1- Agriculture 0.1351 22.509
2- Mining 0.1280 11.324

3- Utilities 0.1359 11.987
4- Construction 0.1002 4.278

5- Manufacturing 0.0631 -2.154
6- Wholesail Trade 0.0805 9.256

7- Retail 0.1359 5.862
8- Transportation 0.1408 8.476

9- Information 0.1394 7.163
10- Others 0.1201 -78.703

Exogeneity Test

Long-Short (buy 1,3 - sell 4,5) 0.0877
(t-stat) (14.86)

Panel 2

−5 0 5 10 15 20 25
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Dynamic Centrality

E
x
p
re

c
te

d
 R

e
tu

rn

3

2

5

4

6

89
17

71



Table X – For the ‘Star’ network of Proposition 4, the table reports the critical k∗ for different
parameter combinations. It also reports the percentage of states for which condition ptu

t (H1) < ptu

t (H1) is
violated when ki < k∗, where ki is 1.05 for i = 1, k∗ for i = 6, and is linearly increasing in i. tu − t = 1 year.

(λ, η) k∗ % of violations

k1 k2 k3 k4 k5

(0.40 , 0.50) 22.02 61.72 22.05 6.58 1.29 0.28
(0.43 , 0.50) 19.96 57.77 19.55 5.41 1.29 0.28
(0.47 , 0.50) 18.23 54.30 17.17 5.03 1.08 0.27

(0.50 , 0.50) 16.74 49.52 14.98 4.48 1.08 0.27
(0.50 , 0.40) 15.72 45.34 14.17 4.48 1.14 0.27

(0.50 , 0.43) 16.15 47.42 14.42 4.48 1.02 0.27
(0.50 , 0.47) 16.61 49.41 15.39 4.47 1.08 0.27

(0.50 , 0.50) 17.13 50.75 15.41 4.48 1.08 0.27

Table XI – Representation of exogeneity estimates on beta-size sorted portfolios. Portfolios’
exogeneity are obtained as in expression (18). Smaller circles means lower exogeneity. The network connec-
tivity is reported as directed arrows only for connections with strength beyond a given threshold (E1m.

ij > 0).
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